

Implementing Abstractions
Part Two

Previously, on CS106B...

A Bounded Stack

4

0

allocated
size

logical
size

element
array

The stack’s allocated size is
the number of slots in the

array. Remember – arrays in
C++ cannot grow or shrink.

The stack’s allocated size is
the number of slots in the

array. Remember – arrays in
C++ cannot grow or shrink.

The stack’s logical size is the
number of elements actually

stored in the stack. This lets us
track how much space we’re

actually using.

The stack’s logical size is the
number of elements actually

stored in the stack. This lets us
track how much space we’re

actually using.

Running out of Space

● Our current implementation very quickly
runs out of space to store elements.

● What should we do when this happens?

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42 161 314

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

137 42 161 314 159

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

Ready... set... grow!

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

Analyzing Our Approach

● We now have a working solution, but is it
an efficient solution?

● Let's analyze the big-O complexity of the
five operations.
● size: O(1)
● isEmpty: O(1)
● push: O(n)
● pop: O(1)
● peek: O(1)

What This Means

● What is the complexity of pushing n
elements and then popping them?

● Cost of the pushes:
● 1 + 2 + 3 + 4 + … + n = O(n2)

● Cost of the pops:
● 1 + 1 + 1 + 1 + … + 1 = O(n)

● Total cost: O(n2)

Validating Our Model

Time-Out for Announcements!

Assignment 4

● Assignment 4 is due on Friday.
● Recommendation: Aim to complete all

the parts of the assignment by the end of
this evening.

● We’ve posted a handy Assignment
Submission Checklist up on the course
website. Work through this before
submitting – it’ll help make sure your
code is ready to go!

Midterm Exam

● The midterm exam is next Tuesday, February 21 from
7:00PM – 10:00PM.
● Location TBA

● Covers topics up through and including big-O notation,
plus Assignments 0 – 4.

● Closed-book, closed-computer, limited-note. You get one
double-sided sheet of 8.5” × 11” notes when you take
the exam. We also provide a library reference sheet.

● Practice exam posted on the course website.
● Need some practice? Work through the section

handouts, the chapter exercises in the textbook, and
revisit old assignments. Need more practice? Let us
know!

Want to check out Treehacks?
A little nervous about it?

Don't know anyone else who's doing it?

Come to HACK 101!

Learn how to be successful at a hackathon!
Meet teammates for Treehacks!

Start the ideation process for your project!

RSVP HERE
hosted by Black in CS

Tonight!
WCC, 9PM – 10PM

https://goo.gl/forms/u09ak8n0aDugpOjj1

Back to the Stack!

Speeding up the Stack

Key Idea: Plan for the Future

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42 161 314

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

What Just Happened?

● Half of our pushes are now “easy”
pushes, and half of our pushes are now
“hard” pushes.

● Hard pushes still take time O(n).
● Easy pushes only take time O(1).
● Worst-case is still O(n).
● What about the average case?

Analyzing the Work

We cut down the
amount of work
by roughly one

half!

We cut down the
amount of work
by roughly one

half!

A Different Analysis

We cut down the
amount of work
by roughly one

half!

We cut down the
amount of work
by roughly one

half!

How does it stack up?

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

137 42 271 828

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

Let's Give it a Try!

How do we analyze this?

Spreading the Work

Spreading the Work

On average, we do
just 3 units of work!

This is O(1) work on
average!

On average, we do
just 3 units of work!

This is O(1) work on
average!

Sharing the Burden

● We still have “heavy” pushes taking time
O(n) and “light” pushes taking time O(1).

● Worst-case time for a push is O(n).
● Heavy pushes become so rare that the

average time for a push is O(1).
● Can we confirm this?

Amortized Analysis

● The analysis we have just done is called
an amortized analysis.

● Reason about the total amount of work
done, not the word done per operation.

● In an amortized sense, our
implementation of the stack is extremely
fast!

● This is one of the most common
approaches to implementing Stack.

Implementing Queue

Implementing Queue

● We've just used dynamic arrays to
implement a stack. Could we use them to
implement a queue?

● Yes, but here's a better idea: could we
use our stack to implement a queue?

The Two-Stack Queue

● Maintain two stacks, an In stack and an
Out stack.

● To enqueue an element, push it onto the
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything off

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.

Analyzing Efficiency

● How efficient is our two-stack queue?

● All enqueues just do one push.

● A dequeue might do a lot of pushes and a lot of
pops.

● However, let's do an amortized analysis:
● Each element is pushed at most twice and popped at

most twice.
● n enqueues and n dequeues thus do at most 4n

pushes and pops.
● Any 4n pushes / pops takes O(n) amortized time.
● Amortized cost: O(1) per operation.

Next Time

● Linked Lists
● A different way to represent sequences of

elements.
● Dynamic Allocation Revisited

● What else can we allocate?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

