
  

Implementing Abstractions
Part Two



  

Previously, on CS106B...



  

A Bounded Stack
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the number of slots in the 
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Running out of Space

● Our current implementation very quickly 
runs out of space to store elements.

● What should we do when this happens?



  

An Initial Idea
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Ready... set... grow!



  

An Initial Idea
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void OurStack::grow() {
    allocatedSize++;

    int* newElems = new int[allocatedSize];

    for (int i = 0; i < size(); i++) {
        newElems[i] = elems[i];
    }

    delete[] elems;
    elems = newElems;
}

void OurStack::grow() {
    allocatedSize++;

    int* newElems = new int[allocatedSize];

    for (int i = 0; i < size(); i++) {
        newElems[i] = elems[i];
    }

    delete[] elems;
    elems = newElems;
}



  

Analyzing Our Approach

● We now have a working solution, but is it 
an efficient solution?

● Let's analyze the big-O complexity of the 
five operations.
● size: O(1)
● isEmpty: O(1)
● push: O(n)
● pop: O(1)
● peek: O(1)



  

What This Means

● What is the complexity of pushing n 
elements and then popping them?

● Cost of the pushes:
● 1 + 2 + 3 + 4 + … + n = O(n2)

● Cost of the pops:
● 1 + 1 + 1 + 1 + … + 1 = O(n)

● Total cost: O(n2)



  

Validating Our Model



  

Time-Out for Announcements!



  

Assignment 4

● Assignment 4 is due on Friday.
● Recommendation: Aim to complete all 

the parts of the assignment by the end of 
this evening.

● We’ve posted a handy Assignment 
Submission Checklist up on the course 
website. Work through this before 
submitting – it’ll help make sure your 
code is ready to go!



  

Midterm Exam

● The midterm exam is next Tuesday, February 21 from 
7:00PM – 10:00PM.
● Location TBA

● Covers topics up through and including big-O notation, 
plus Assignments 0 – 4.

● Closed-book, closed-computer, limited-note. You get one 
double-sided sheet of 8.5” × 11” notes when you take 
the exam. We also provide a library reference sheet.

● Practice exam posted on the course website.
● Need some practice? Work through the section 

handouts, the chapter exercises in the textbook, and 
revisit old assignments. Need more practice? Let us 
know!



  

Want to check out Treehacks? 
A little nervous about it? 

Don't know anyone else who's doing it?

Come to HACK 101! 

Learn how to be successful at a hackathon!
Meet teammates for Treehacks!

Start the ideation process for your project!

RSVP HERE
hosted by Black in CS

Tonight!
WCC, 9PM – 10PM

https://goo.gl/forms/u09ak8n0aDugpOjj1


  

Back to the Stack!



  

Speeding up the Stack



  

Key Idea: Plan for the Future



  

A Better Idea
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What Just Happened?

● Half of our pushes are now “easy” 
pushes, and half of our pushes are now 
“hard” pushes.

● Hard pushes still take time O(n).
● Easy pushes only take time O(1).
● Worst-case is still O(n).
● What about the average case?



  

Analyzing the Work

We cut down the 
amount of work 
by roughly one 

half!
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A Different Analysis

We cut down the 
amount of work 
by roughly one 
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We cut down the 
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by roughly one 

half!



  

How does it stack up?
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Let's Give it a Try!



  

How do we analyze this?



  

Spreading the Work



  

Spreading the Work

On average, we do 
just 3 units of work!

This is O(1) work on 
average!

On average, we do 
just 3 units of work!

This is O(1) work on 
average!



  

Sharing the Burden

● We still have “heavy” pushes taking time 
O(n) and “light” pushes taking time O(1).

● Worst-case time for a push is O(n).
● Heavy pushes become so rare that the 

average time for a push is O(1).
● Can we confirm this?



  

Amortized Analysis

● The analysis we have just done is called 
an amortized analysis.

● Reason about the total amount of work 
done, not the word done per operation.

● In an amortized sense, our 
implementation of the stack is extremely 
fast!

● This is one of the most common 
approaches to implementing Stack.



  

Implementing Queue



  

Implementing Queue

● We've just used dynamic arrays to 
implement a stack. Could we use them to 
implement a queue?

● Yes, but here's a better idea: could we 
use our stack to implement a queue?



  

The Two-Stack Queue

● Maintain two stacks, an In stack and an 
Out stack.

● To enqueue an element, push it onto the 
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything off 

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.



  

Analyzing Efficiency

● How efficient is our two-stack queue?

● All enqueues just do one push.

● A dequeue might do a lot of pushes and a lot of 
pops.

● However, let's do an amortized analysis:
● Each element is pushed at most twice and popped at 

most twice.
● n enqueues and n dequeues thus do at most 4n 

pushes and pops.
● Any 4n pushes / pops takes O(n) amortized time.
● Amortized cost: O(1) per operation.



  

Next Time

● Linked Lists
● A different way to represent sequences of 

elements.
● Dynamic Allocation Revisited

● What else can we allocate?
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