

Implementing Abstractions
Part Two

Previously, on CS106B...

A Bounded Stack

4

0

allocated
size

logical
size

element
array

A Bounded Stack

4

0

allocated
size

logical
size

element
array

The stack’s allocated size is
the number of slots in the

array. Remember – arrays in
C++ cannot grow or shrink.

The stack’s allocated size is
the number of slots in the

array. Remember – arrays in
C++ cannot grow or shrink.

A Bounded Stack

4

0

allocated
size

logical
size

element
array

The stack’s allocated size is
the number of slots in the

array. Remember – arrays in
C++ cannot grow or shrink.

The stack’s allocated size is
the number of slots in the

array. Remember – arrays in
C++ cannot grow or shrink.

The stack’s logical size is the
number of elements actually

stored in the stack. This lets us
track how much space we’re

actually using.

The stack’s logical size is the
number of elements actually

stored in the stack. This lets us
track how much space we’re

actually using.

A Bounded Stack

4

1

allocated
size

logical
size

element
array

137

A Bounded Stack

4

2

allocated
size

logical
size

element
array

137 42

A Bounded Stack

4

3

allocated
size

logical
size

element
array

137 42 2718

A Bounded Stack

4

4

allocated
size

logical
size

element
array

137 42 2718 512

A Bounded Stack

4

3

allocated
size

logical
size

element
array

137 42 2718 512

A Bounded Stack

4

3

allocated
size

logical
size

element
array

137 42 2718 512

Arrays cannot grow or
shrink, so this older value is
still technically there in the
array. We’re just going to

pretend it isn’t.

Arrays cannot grow or
shrink, so this older value is
still technically there in the
array. We’re just going to

pretend it isn’t.

A Bounded Stack

4

2

allocated
size

logical
size

element
array

137 42 5122718

A Bounded Stack

4

3

allocated
size

logical
size

element
array

137 42 161 512

A Bounded Stack

4

4

allocated
size

logical
size

element
array

137 42 161 314

Running out of Space

● Our current implementation very quickly
runs out of space to store elements.

● What should we do when this happens?

An Initial Idea

4

2

allocated
size

logical
size

element
array

137 42

An Initial Idea

4

3

allocated
size

logical
size

element
array

137 42 161

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42 161

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42 161 314

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42 161 314

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

An Initial Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

An Initial Idea

5

4

allocated
size

logical
size

element
array

137 42 161 314

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

137

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

137 42

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

137 42 161

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

137 42 161 314

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

137 42 161 314 159

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

137 42 161 314 159

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

An Initial Idea

5

5

allocated
size

logical
size

element
array

137 42 161 314 159

An Initial Idea

6

5

allocated
size

logical
size

element
array

137 42 161 314 159

An Initial Idea

6

6

allocated
size

logical
size

element
array

137 42 161 314 159 265

Ready... set... grow!

An Initial Idea

4

4

allocated
size

logical
size

elems

137 42 161 314

An Initial Idea

4

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

newElems

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

newElems

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

newElems

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

newElems

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

newElems

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

newElems

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

newElems

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

newElems

An Initial Idea

5

4

allocated
size

logical
size

elems

137 42 161 314

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

void OurStack::grow() {
 allocatedSize++;

 int* newElems = new int[allocatedSize];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

Analyzing Our Approach

● We now have a working solution, but is it
an efficient solution?

● Let's analyze the big-O complexity of the
five operations.
● size: O(1)
● isEmpty: O(1)
● push: O(n)
● pop: O(1)
● peek: O(1)

Analyzing Our Approach

● We now have a working solution, but is it
an efficient solution?

● Let's analyze the big-O complexity of the
five operations.
● size: O(1)
● isEmpty: O(1)
● push: O(n)
● pop: O(1)
● peek: O(1)

What This Means

● What is the complexity of pushing n
elements and then popping them?

Cost of the pushes:

1 + 2 + 3 + 4 + … + n = O(n2)

Cost of the pops:

1 +1 + 1 + 1 + … + 1 = O(n)

Total cost: O(n2)

What This Means

● What is the complexity of pushing n
elements and then popping them?

● Cost of the pushes:
● 1 + 2 + 3 + 4 + … + n = O(n2)

Cost of the pops:

1 +1 + 1 + 1 + … + 1 = O(n)

Total cost: O(n2)

What This Means

● What is the complexity of pushing n
elements and then popping them?

● Cost of the pushes:
● 1 + 2 + 3 + 4 + … + n = O(n2)

Cost of the pops:

1 +1 + 1 + 1 + … + 1 = O(n)

Total cost: O(n2)

What This Means

● What is the complexity of pushing n
elements and then popping them?

● Cost of the pushes:
● 1 + 2 + 3 + 4 + … + n = O(n2)

● Cost of the pops:
● 1 + 1 + 1 + 1 + … + 1 = O(n)

Total cost: O(n2)

What This Means

● What is the complexity of pushing n
elements and then popping them?

● Cost of the pushes:
● 1 + 2 + 3 + 4 + … + n = O(n2)

● Cost of the pops:
● 1 + 1 + 1 + 1 + … + 1 = O(n)

Total cost: O(n2)

What This Means

● What is the complexity of pushing n
elements and then popping them?

● Cost of the pushes:
● 1 + 2 + 3 + 4 + … + n = O(n2)

● Cost of the pops:
● 1 + 1 + 1 + 1 + … + 1 = O(n)

● Total cost: O(n2)

What This Means

● What is the complexity of pushing n
elements and then popping them?

● Cost of the pushes:
● 1 + 2 + 3 + 4 + … + n = O(n2)

● Cost of the pops:
● 1 + 1 + 1 + 1 + … + 1 = O(n)

● Total cost: O(n2)

Validating Our Model

Time-Out for Announcements!

Assignment 4

● Assignment 4 is due on Friday.
● Recommendation: Aim to complete all

the parts of the assignment by the end of
this evening.

● We’ve posted a handy Assignment
Submission Checklist up on the course
website. Work through this before
submitting – it’ll help make sure your
code is ready to go!

Midterm Exam

● The midterm exam is next Tuesday, February 21 from
7:00PM – 10:00PM.
● Location TBA

● Covers topics up through and including big-O notation,
plus Assignments 0 – 4.

● Closed-book, closed-computer, limited-note. You get one
double-sided sheet of 8.5” × 11” notes when you take
the exam. We also provide a library reference sheet.

● Practice exam posted on the course website.
● Need some practice? Work through the section

handouts, the chapter exercises in the textbook, and
revisit old assignments. Need more practice? Let us
know!

Want to check out Treehacks?
A little nervous about it?

Don't know anyone else who's doing it?

Come to HACK 101!

Learn how to be successful at a hackathon!
Meet teammates for Treehacks!

Start the ideation process for your project!

RSVP HERE
hosted by Black in CS

Tonight!
WCC, 9PM – 10PM

https://goo.gl/forms/u09ak8n0aDugpOjj1

Back to the Stack!

Speeding up the Stack

Key Idea: Plan for the Future

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42 161

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42 161 314

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

137 42 161 314

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

A Better Idea

4

4

allocated
size

logical
size

element
array

137 42 161 314

A Better Idea

6

4

allocated
size

logical
size

element
array

137 42 161 314

A Better Idea

6

5

allocated
size

logical
size

element
array

137 42 161 314 159

A Better Idea

6

6

allocated
size

logical
size

element
array

137 42 161 314 159 265

What Just Happened?

● Half of our pushes are now “easy”
pushes, and half of our pushes are now
“hard” pushes.

● Hard pushes still take time O(n).
● Easy pushes only take time O(1).
● Worst-case is still O(n).
● What about the average case?

Analyzing the Work

Analyzing the Work

Analyzing the Work

We cut down the
amount of work
by roughly one

half!

We cut down the
amount of work
by roughly one

half!

A Different Analysis

A Different Analysis

A Different Analysis

A Different Analysis

A Different Analysis

A Different Analysis

A Different Analysis

A Different Analysis

We cut down the
amount of work
by roughly one

half!

We cut down the
amount of work
by roughly one

half!

How does it stack up?

A Much Better Idea

2

2

allocated
size

logical
size

element
array

137 42

A Much Better Idea

2

2

allocated
size

logical
size

element
array

137 42

A Much Better Idea

2

2

allocated
size

logical
size

element
array

137 42

137

A Much Better Idea

2

2

allocated
size

logical
size

element
array

137 42

137 42

A Much Better Idea

2

2

allocated
size

logical
size

element
array

137 42

137 42

A Much Better Idea

2

2

allocated
size

logical
size

element
array

137 42

A Much Better Idea

2

2

allocated
size

logical
size

element
array

137 42

A Much Better Idea

4

2

allocated
size

logical
size

element
array

137 42

A Much Better Idea

4

3

allocated
size

logical
size

element
array

137 42 271

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

137

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

137 42

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

137 42 271

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

137 42 271 828

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

137 42 271 828

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

A Much Better Idea

4

4

allocated
size

logical
size

element
array

137 42 271 828

A Much Better Idea

8

4

allocated
size

logical
size

element
array

137 42 271 828

A Much Better Idea

8

5

allocated
size

logical
size

element
array

137 42 271 828 182

A Much Better Idea

8

6

allocated
size

logical
size

element
array

137 42 271 828 182 845

A Much Better Idea

8

7

allocated
size

logical
size

element
array

137 42 271 828 182 845 904

A Much Better Idea

8

8

allocated
size

logical
size

element
array

137 42 271 828 182 845 904 5

Let's Give it a Try!

How do we analyze this?

Spreading the Work

Spreading the Work

Spreading the Work

Spreading the Work

Spreading the Work

Spreading the Work

Spreading the Work

Spreading the Work

Spreading the Work

Spreading the Work

Spreading the Work

On average, we do
just 3 units of work!

This is O(1) work on
average!

On average, we do
just 3 units of work!

This is O(1) work on
average!

Sharing the Burden

● We still have “heavy” pushes taking time
O(n) and “light” pushes taking time O(1).

● Worst-case time for a push is O(n).
● Heavy pushes become so rare that the

average time for a push is O(1).
● Can we confirm this?

Amortized Analysis

● The analysis we have just done is called
an amortized analysis.

● Reason about the total amount of work
done, not the word done per operation.

● In an amortized sense, our
implementation of the stack is extremely
fast!

● This is one of the most common
approaches to implementing Stack.

Implementing Queue

Implementing Queue

● We've just used dynamic arrays to
implement a stack. Could we use them to
implement a queue?

● Yes, but here's a better idea: could we
use our stack to implement a queue?

The Two-Stack Queue

Out In

The Two-Stack Queue

1
Out In

The Two-Stack Queue

1
Out In

2

The Two-Stack Queue

1
Out In

2

3

The Two-Stack Queue

1
Out In

2

3

4

The Two-Stack Queue

1
Out In

2

3

4

The Two-Stack Queue

1
Out In

2

3

4

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

23

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

In

2

3

4
Out

11

The Two-Stack Queue

In

2

3

4
Out

1

The Two-Stack Queue

In

3

4
Out

1 21 2

The Two-Stack Queue

3

4
Out

5
In

1 2

The Two-Stack Queue

3

4
Out

5
In

6

1 2

The Two-Stack Queue

3

4
Out

5
In

6

1 2

The Two-Stack Queue

4
Out

5
In

6

1 2 3

The Two-Stack Queue

4
Out

5
In

6

7

1 2 3

The Two-Stack Queue

4

Out

5
In

6

7

1 2 3

The Two-Stack Queue

Out

5
In

6

7

1 2 3 41 2 3 4

The Two-Stack Queue

Out

5
In

6

7

1 2 3 4

The Two-Stack Queue

Out

5
In

6

7

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

In

6

7
Out

1 2 3 4 5

The Two-Stack Queue

● Maintain two stacks, an In stack and an
Out stack.

● To enqueue an element, push it onto the
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything off

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.

Analyzing Efficiency

● How efficient is our two-stack queue?

● All enqueues just do one push.

● A dequeue might do a lot of pushes and a lot of
pops.

● However, let's do an amortized analysis:
● Each element is pushed at most twice and popped at

most twice.
● n enqueues and n dequeues thus do at most 4n

pushes and pops.
● Any 4n pushes / pops takes O(n) amortized time.
● Amortized cost: O(1) per operation.

Next Time

● Linked Lists
● A different way to represent sequences of

elements.
● Dynamic Allocation Revisited

● What else can we allocate?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177

