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Part Two



  

Previously, on CS106B...



  

A Bounded Stack

4

0

allocated
size

logical
size

element
array



  

A Bounded Stack

4

0

allocated
size

logical
size

element
array

The stack’s allocated size is 
the number of slots in the 

array. Remember – arrays in 
C++ cannot grow or shrink.

The stack’s allocated size is 
the number of slots in the 

array. Remember – arrays in 
C++ cannot grow or shrink.



  

A Bounded Stack

4

0

allocated
size

logical
size

element
array

The stack’s allocated size is 
the number of slots in the 

array. Remember – arrays in 
C++ cannot grow or shrink.

The stack’s allocated size is 
the number of slots in the 

array. Remember – arrays in 
C++ cannot grow or shrink.

The stack’s logical size is the 
number of elements actually 

stored in the stack. This lets us 
track how much space we’re 

actually using.

The stack’s logical size is the 
number of elements actually 

stored in the stack. This lets us 
track how much space we’re 

actually using.



  

A Bounded Stack

4

1

allocated
size

logical
size

element
array

137



  

A Bounded Stack

4

2

allocated
size

logical
size

element
array

137 42



  

A Bounded Stack

4

3

allocated
size

logical
size

element
array

137 42 2718



  

A Bounded Stack

4

4

allocated
size

logical
size

element
array

137 42 2718 512



  

A Bounded Stack

4

3

allocated
size

logical
size

element
array

137 42 2718 512



  

A Bounded Stack

4

3

allocated
size

logical
size

element
array

137 42 2718 512

Arrays cannot grow or 
shrink, so this older value is 
still technically there in the 
array. We’re just going to 

pretend it isn’t.

Arrays cannot grow or 
shrink, so this older value is 
still technically there in the 
array. We’re just going to 

pretend it isn’t.



  

A Bounded Stack

4

2

allocated
size

logical
size

element
array

137 42 5122718



  

A Bounded Stack

4

3

allocated
size

logical
size

element
array

137 42 161 512



  

A Bounded Stack

4

4

allocated
size

logical
size

element
array

137 42 161 314



  

Running out of Space

● Our current implementation very quickly 
runs out of space to store elements.

● What should we do when this happens?
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Ready... set... grow!
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    elems = newElems;
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● pop: O(1)
● peek: O(1)
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Time-Out for Announcements!



  

Assignment 4

● Assignment 4 is due on Friday.
● Recommendation: Aim to complete all 

the parts of the assignment by the end of 
this evening.

● We’ve posted a handy Assignment 
Submission Checklist up on the course 
website. Work through this before 
submitting – it’ll help make sure your 
code is ready to go!



  

Midterm Exam

● The midterm exam is next Tuesday, February 21 from 
7:00PM – 10:00PM.
● Location TBA

● Covers topics up through and including big-O notation, 
plus Assignments 0 – 4.

● Closed-book, closed-computer, limited-note. You get one 
double-sided sheet of 8.5” × 11” notes when you take 
the exam. We also provide a library reference sheet.

● Practice exam posted on the course website.
● Need some practice? Work through the section 

handouts, the chapter exercises in the textbook, and 
revisit old assignments. Need more practice? Let us 
know!



  

Want to check out Treehacks? 
A little nervous about it? 

Don't know anyone else who's doing it?

Come to HACK 101! 

Learn how to be successful at a hackathon!
Meet teammates for Treehacks!

Start the ideation process for your project!

RSVP HERE
hosted by Black in CS

Tonight!
WCC, 9PM – 10PM

https://goo.gl/forms/u09ak8n0aDugpOjj1


  

Back to the Stack!



  

Speeding up the Stack



  

Key Idea: Plan for the Future
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What Just Happened?

● Half of our pushes are now “easy” 
pushes, and half of our pushes are now 
“hard” pushes.

● Hard pushes still take time O(n).
● Easy pushes only take time O(1).
● Worst-case is still O(n).
● What about the average case?
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How does it stack up?
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Let's Give it a Try!



  

How do we analyze this?
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Spreading the Work

On average, we do 
just 3 units of work!

This is O(1) work on 
average!

On average, we do 
just 3 units of work!

This is O(1) work on 
average!



  

Sharing the Burden

● We still have “heavy” pushes taking time 
O(n) and “light” pushes taking time O(1).

● Worst-case time for a push is O(n).
● Heavy pushes become so rare that the 

average time for a push is O(1).
● Can we confirm this?



  

Amortized Analysis

● The analysis we have just done is called 
an amortized analysis.

● Reason about the total amount of work 
done, not the word done per operation.

● In an amortized sense, our 
implementation of the stack is extremely 
fast!

● This is one of the most common 
approaches to implementing Stack.



  

Implementing Queue



  

Implementing Queue

● We've just used dynamic arrays to 
implement a stack. Could we use them to 
implement a queue?

● Yes, but here's a better idea: could we 
use our stack to implement a queue?
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The Two-Stack Queue

● Maintain two stacks, an In stack and an 
Out stack.

● To enqueue an element, push it onto the 
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything off 

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.



  

Analyzing Efficiency

● How efficient is our two-stack queue?

● All enqueues just do one push.

● A dequeue might do a lot of pushes and a lot of 
pops.

● However, let's do an amortized analysis:
● Each element is pushed at most twice and popped at 

most twice.
● n enqueues and n dequeues thus do at most 4n 

pushes and pops.
● Any 4n pushes / pops takes O(n) amortized time.
● Amortized cost: O(1) per operation.



  

Next Time

● Linked Lists
● A different way to represent sequences of 

elements.
● Dynamic Allocation Revisited

● What else can we allocate?
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