
  

Implementing Abstractions
Part One



  

Turtles All the Way Down?

● Last time, we implemented a RandomBag on 
top of our library Vector type.

● But the Vector type is itself a library – 
what is it layered on top of?

● Question: What are the fundamental 
building blocks provided by the 
language, and how do we use them to 
build our own custom classes?



  

Getting Storage Space

● The Vector, Stack, Queue, etc. all need storage 
space to put the elements that they store.

● That storage space is allocated using 
dynamic memory allocation.

● Essentially:
● You can, at runtime, ask for extra storage space, 

which C++ will give to you.
● You can use that storage space however you’d like.
● You have to explicitly tell the language when 

you’re done using the memory.



  

Dynamic Allocation Demo



  

int main() {
int numValues = getInteger("How many lines? ");

string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) {

arr[i] = getLine();
}

for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}
}

int main() {
int numValues = getInteger("How many lines? ");

string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) {

arr[i] = getLine();
}

for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}
} 7numValues arr

Because the variable arr 
points to the array, it is 

called a pointer.

Because the variable arr 
points to the array, it is 

called a pointer.



  

int main() {
int numValues = getInteger("How many lines? ");

string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) {

arr[i] = getLine();
}

for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}
}

int main() {
int numValues = getInteger("How many lines? ");

string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) {

arr[i] = getLine();
}

for (int i = 0; i < numValues; i++) {
cout << i << ": " << arr[i] << endl;

}
} 7numValues arr

We Can Dance If We Want To

7i



  

Dynamically Allocating Arrays

● First, declare a variable that will point at the newly-
allocated array.  If the array elements have type T, 
the pointer will have type T*.
● e.g. int*, string*, Vector<double>*

● Then, create a new array with the new keyword and 
assign the pointer to point to it.

● In two separate steps:

          T* arr;
          arr = new T[size];

● Or, in the same line:

          T* arr = new T[size];



  

Dynamically Allocating Arrays

● C++’s language philosophy prioritizes speed over 
safety and simplicity.

● The array you get from new[] is fixed-size: it can 
neither grow nor shrink once it’s created.
● The programmer’s version of “conservation of mass.”

● The array you get from new[] has no bounds-
checking. Walking off the beginning or end of an 
array triggers undefined behavior.
● Literally anything can happen: you read back garbage, 

you crash your program, or you let a hacker take over 
your computer. Do a search for “buffer overflow” for 
more details.



  

Cleaning Up

● When declaring local variables or parameters,
C++ will automatically handle memory 
allocation and deallocation for you.

● When using new, you are responsible for 
deallocating the memory you allocate.

● If you don't, you get a memory leak. Your 
program will never be able to use that memory 
again.
● Too many leaks can cause a program to 

crash – it’s important to not leak memory!



  

Cleaning Up

● You can deallocate memory with the delete[] 
operator:

delete[] ptr;

● This destroys the array pointed at by the given 
pointer, not the pointer itself.

ptr
137

42

42



  

Cleaning Up

● You can deallocate memory with the delete[] 
operator:

delete[] ptr;

● This destroys the array pointed at by the given 
pointer, not the pointer itself.

ptr
???

ptr is now a dangling pointer. We 
can reassign it to point somewhere 

else, but if we try to read from it, it’ll 
do Cruel and Unusual Things!

ptr is now a dangling pointer. We 
can reassign it to point somewhere 

else, but if we try to read from it, it’ll 
do Cruel and Unusual Things!



  

Time-Out for Announcements!



  

Midterm Exam

● The midterm exam is next Tuesday, February 21 from 7:00PM 
– 10:00PM.
● Location TBA

● Covers topics up through and including big-O notation, plus 
Assignments 0 – 4.

● Closed-book, closed-computer, limited-note. You get one 
double-sided sheet of 8.5” × 11” notes when you take the 
exam. We also provide a library reference sheet.

● We’re holding a practice exam tonight, right here from 
7:00PM – 10:00PM.
● You should plan to attend the practice exam unless you have a 

hard conflict. The actual exam should not be the first time you write 
code on paper under time pressure.

● Can’t make the exam time? You must contact Anton by 
5:00PM today.



  

Assignment 4

● Assignment 4 is due on Friday.
● If you’re following our timetable, you should 

aim to complete Doctors Without Orders, 
Disaster Planning, and DNA Detective by this 
evening.

● You should aim to complete the Winning the 
Presidency part of the assignment by 
Wednesday evening.

● Please ask questions on Piazza, stop by Keith’s 
or Anton’s office hours, or drop by the LaIR if 
you have questions!



  

A Humble Plea

● Please feel free to ask questions on 
Piazza.

● However, if you do, please make sure 
that the question you’re asking hasn’t 
already been answered before – we’re 
getting a lot of duplicate questions.

● That’s all!



  

continue;



  

Implementing Stack



  

Implementing Stack

● Last time, we saw how to implement 
RandomBag in terms of Vector.

● We could also implement Stack in terms 
of Vector.

● What if we wanted to implement the 
Stack without relying on any other 
collections?

● Let's build the stack directly!



  

You Gotta Start Somewhere

● Our initial implementation of the stack will 
be a bounded stack with a maximum 
capacity.

● We’ll allocate a fixed amount of storage 
space for the elements, then write them into 
the array as they’re pushed.

● If we run out of space, we’ll report an error.
● Next time, we’ll update this code so that we 

can have a stack without any fixed maximum 
capacity.



  

An Initial Idea

4

0

allocated
size

logical
size

element
array

The stack’s allocated size is 
the number of slots in the 

array. Remember – arrays in 
C++ cannot grow or shrink.

The stack’s allocated size is 
the number of slots in the 

array. Remember – arrays in 
C++ cannot grow or shrink.

The stack’s logical size is the 
number of elements actually 

stored in the stack. This lets us 
track how much space we’re 

actually using.

The stack’s logical size is the 
number of elements actually 

stored in the stack. This lets us 
track how much space we’re 

actually using.



  

An Initial Idea

4

3

allocated
size

logical
size

element
array

137 42 2718 512

Arrays cannot grow or 
shrink, so this older value is 
still technically there in the 
array. We’re just going to 

pretend it isn’t.

Arrays cannot grow or 
shrink, so this older value is 
still technically there in the 
array. We’re just going to 

pretend it isn’t.



  

Cradle to Grave

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}

???

???

allocated
size

logical
size

element
array

Undefined

behavior!



  

Constructors

● A constructor is a special member 
function used to set up the class before it 
is used.

● The constructor is automatically called 
when the object is created.

● The constructor for a class named 
ClassName has signature

ClassName(args); 



  

Cradle to Grave, Take II

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}

???

???

allocated
size

logical
size

element
array



  

Cradle to Grave, Take II

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}

4

0

allocated
size

logical
size

element
array

OurStack::OurStack() {
    logicalSize = 0;
    allocatedSize = kInitialSize;
    elems = new int[allocatedSize];
}

OurStack::OurStack() {
    logicalSize = 0;
    allocatedSize = kInitialSize;
    elems = new int[allocatedSize];
}



  

Cradle to Grave, Take II

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}

I am adrift, alone,
condemned to forever
wander meaninglessly.



  

Destructors

● A destructor is a special member function 
responsible for cleaning up an object's memory.

● It’s automatically called whenever an object’s 
lifetime ends (for example, if it’s a local 
variable that goes out of scope.)

● The destructor for a class named ClassName 
has signature

~ClassName();



  

To Summarize

● You can create arrays of a fixed size at 
runtime by using new[].

● You are responsible for freeing any 
memory you explicitly allocate by calling 
delete[].

● Constructors are used to set up a class’s 
internal state so that it’s in a good place.

● Destructors are used to free resource 
that a class allocates.



  

Next Time

● Making Stack Grow!
● Different approaches to Stack growth.
● Analysis of these approaches.
● The reality: everything is a tradeoff!

● Implementing the Queue
● … is not too hard when you have a stack!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

