

Designing Abstractions

Apply to Section Lead!

Application Online
Due Thursday, February 16th, 11:59PM

https://cs198.stanford.edu/cs106/Apply.aspx

Want to check out Treehacks?
A little nervous about it?

Don't know anyone else who's doing it?

Come to HACK 101!

Learn how to be successful at a hackathon!
Meet teammates for Treehacks!

Start the ideation process for your project!

RSVP HERE
hosted by Black in CS

https://goo.gl/forms/u09ak8n0aDugpOjj1

Assignment 4

● Assignment 4 is due a week from today.
● Aim to be done with Doctors Without Orders

and Disaster Planning by the end of the
evening.

● Try to complete DNA Detective by Monday.
● Remember: The midterm is right after

Assignment 4 comes due, so using late
days here is a Really Bad Idea!

Midterm Logistics

● Our Midterm is Tuesday, February 21st from
7:00PM – 10:00PM, location TBA.

● Topic coverage:
● Lectures 00 – 12 (up through and including

sorting and big-O notation).
● Assignments 0, 1, 2, 3, and 4.

● Email Anton by Monday at 5:00PM to arrange for
an alternate time. No alternate exam time
requests will be accepted after that point.

● Students with OAE accommodations: if you
haven’t yet reached out to us, please do so ASAP.

Midterm Logistics

● Exam is closed-book, closed-computer, and limited-
note. You can have a single 8.5” × 11” sheet of notes
with you when you take the exam.
● It can be hand-written, typed, calligraphed,

mimeographed, etc.
● Recommendation: hand-write your own notes

sheet. Start off by writing notes without regard to
length, then pare it down to a single sheet.

● We’ll provide a C++ library reference sheet with the
exam, so you shouldn’t need to cram all that into your
notes sheet.

http://web.stanford.edu/class/cs106b/materials/Midterm%20Reference%20Sheet.pdf

Practice Midterm

● We will be holding a practice midterm exam next
Monday, February 13th here in Hewlett 200 from
7:00PM – 10:00PM.

● You should plan to attend this practice
exam unless you have an immovable
conflict. The first time you write code on paper
should not be during the exam itself.

● Can’t make it? The practice exam will be posted
on the course website, along with solutions.

Extra Practice

● Need some extra practice?
● Work through the section handouts. We

deliberately put way more questions on them than
you can handle in section so that you can use them
as a study resource.

● Work through the textbook practice problems.
The chapter exercises are a great way to sharpen
your skills.

● Revisit old assignments. It’ll be a lot easier to
code them up the second time around!

● Still not enough practice? Contact us and we
can try to put some more materials together.

Onward and Forward!

Designing Abstractions

Building a rich vocabulary of abstractions
makes it possible to model and solve a

wider class of problems.

Question One:

How do we create new abstractions we can
use to model and solve larger problems?

Question Two:

How do the abstractions we’ve been using
so far work, and how can we use that

knowledge to build richer abstractions?

Classes in C++

Classes

● Vector, Stack, Queue, Map, etc. are classes
in C++.

● Classes contain
● An interface specifying what operations can

be performed on instances of the class.
● An implementation specifying how those

operations are to be performed.
● To define our own classes, we must

define both the interface and the
implementation.

Random Bags

● A random bag is a data structure similar to a
stack or queue. It supports two operations:

● Add, which adds an element to the random bag,
and

● Remove random, which returns and removes a
random element from the bag.

● Random bags have a number of applications:
● Simpler: Shuffling a deck of cards.
● More advanced: Training self-driving cars to

park and change lanes. (Curious how? Come
talk to me after class!)

Let's Code it Up!

Classes in C++

● Defining a class in C++ (typically)
requires two steps:
● Create a header file (typically suffixed

with .h) describing what operations the class
can perform and what internal state it needs.

● Create an implementation file (typically
suffixed with .cpp) that contains the
implementation of the class.

● Clients of the class can then include the
header file to use the class.

What’s in a Header?
#ifndef RandomBag_Included
#define RandomBag_Included

#endif

This boilerplate code is called
an include guard. It’s used to
make sure weird things don’t
happen if you include the same
header twice. Curious how it
works? Come talk to me after
class!

This boilerplate code is called
an include guard. It’s used to
make sure weird things don’t
happen if you include the same
header twice. Curious how it
works? Come talk to me after
class!

What’s in a Header?
#ifndef RandomBag_Included
#define RandomBag_Included

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

#endif

This is a class definition.
We’re creating a new class

called RandomBag. Like a struct,
this defines the name of a new

type that we can use in our
programs.

This is a class definition.
We’re creating a new class

called RandomBag. Like a struct,
this defines the name of a new

type that we can use in our
programs.

What’s in a Header?
#ifndef RandomBag_Included
#define RandomBag_Included

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

#endif

Don’t forget to add this
semicolon! You’ll get some

Hairy Scary Compiler Errors if
you leave it out.

Don’t forget to add this
semicolon! You’ll get some

Hairy Scary Compiler Errors if
you leave it out.

What’s in a Header?
#ifndef RandomBag_Included
#define RandomBag_Included

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

#endif

The public interface specifics
what functions you can call on

objects of this type.

Think things like the Vector’s
.add() function or the

TokenScanner’s .nextToken().

The public interface specifics
what functions you can call on

objects of this type.

Think things like the Vector’s
.add() function or the

TokenScanner’s .nextToken().

The private implementation
contains information that

objects of the class type will
need in order to do their job
properly. This is invisible to

people using the class.

The private implementation
contains information that

objects of the class type will
need in order to do their job
properly. This is invisible to

people using the class.

What’s in a Header?
#ifndef RandomBag_Included
#define RandomBag_Included

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

#endif

These are member functions
of the RandomBag class. They’re

functions you can call on
objects of the type RandomBag.

All member functions need to
be declared in the class

definition. We’ll implement
them in our .cpp file.

These are member functions
of the RandomBag class. They’re

functions you can call on
objects of the type RandomBag.

All member functions need to
be declared in the class

definition. We’ll implement
them in our .cpp file.

What’s in a Header?
#ifndef RandomBag_Included
#define RandomBag_Included

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

#endif

This is a data member of the
class. This tells us how the class
is implemented. Internally, we’re

going to store a Vector<int>
holding all the elements. The
only code that can access or

touch this Vector is the RandomBag
implementation.

This is a data member of the
class. This tells us how the class
is implemented. Internally, we’re

going to store a Vector<int>
holding all the elements. The
only code that can access or

touch this Vector is the RandomBag
implementation.

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() const {
 return elems.size();
}

bool RandomBag::isEmpty() const {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

If we’re going to implement
the RandomBag type, the .cpp
file needs to have the class

definition available. All
implementation files need to
include the relevant headers.

If we’re going to implement
the RandomBag type, the .cpp
file needs to have the class

definition available. All
implementation files need to
include the relevant headers.

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() const {
 return elems.size();
}

bool RandomBag::isEmpty() const {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

The syntax

RandomBag::add

means “the add function defined inside of
RandomBag.” The :: operator is called the scope
resolution operation in C++ and is used to say
where to look for things..

The syntax

RandomBag::add

means “the add function defined inside of
RandomBag.” The :: operator is called the scope
resolution operation in C++ and is used to say
where to look for things..

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() const {
 return elems.size();
}

bool RandomBag::isEmpty() const {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

If we had written something like this instead,
then the compiler would think we were just
making a free function named add that has
nothing to do with RandomBag’s version of add.

That’s an easy mistake to make!

If we had written something like this instead,
then the compiler would think we were just
making a free function named add that has
nothing to do with RandomBag’s version of add.

That’s an easy mistake to make!

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() const {
 return elems.size();
}

bool RandomBag::isEmpty() const {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

We don’t need to say what elems is. The compiler
knows we’re inside RandomBag, and so it knows

that this means “the current RandomBag’s
collection of elements.”

We don’t need to say what elems is. The compiler
knows we’re inside RandomBag, and so it knows

that this means “the current RandomBag’s
collection of elements.”

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() {
 return elems.size();
}

bool RandomBag::isEmpty() {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty();
 int size();

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty();
 int size();

private:
 Vector<int> elems;
};

This code calls our own
size() function. The

class implementation
can use the public

interface.

This code calls our own
size() function. The

class implementation
can use the public

interface.

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() {
 return elems.size();
}

bool RandomBag::isEmpty() {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty();
 int size();

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty();
 int size();

private:
 Vector<int> elems;
};

That’s such a
good idea, let’s
do this up here

as well.

That’s such a
good idea, let’s
do this up here

as well.

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() {
 return elems.size();
}

bool RandomBag::isEmpty() {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

This use of the const
keyword means “I
promise that this
function doesn’t

change the object.”

This use of the const
keyword means “I
promise that this
function doesn’t

change the object.”

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() const {
 return elems.size();
}

bool RandomBag::isEmpty() const {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

We have to
remember to put it
here too as well!

We have to
remember to put it
here too as well!

Your Action Items

● Read Chapter 6 of the textbook.
● There’s a ton of goodies in there about class

design that we’ll talk about later on.
● Aim to complete the first two parts of

Assignment 4 by the end of today.
● It’s probably not a good idea to fall behind

on this assignment.
● Aim to complete the first three parts of

Assignment 4 by Monday.
● Proactivity!

Next Time

● Dynamic Allocation
● Where does memory come from?

● Constructors and Destructors
● Taking things out and putting them away.

● Implementing the Stack
● Peering into our tools!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

