

Algorithmic Analysis and Sorting
Part Two

A former student of mine
(Montse Cordero) is studying
different methods of teaching

how to divide fractions.

A key step in her analysis is
looking at the the

computational complexity of
the different approaches

using big-O notation!

A former student of mine
(Montse Cordero) is studying
different methods of teaching

how to divide fractions.

A key step in her analysis is
looking at the the

computational complexity of
the different approaches

using big-O notation!

Recap from Last Time

Big-O Notation

● Big-O notation is a quantitative way to
describe the runtime of a piece of code.

● Works by dropping constants and low-order
growth terms.

● For example, this code runs in time O(n):

for (int i = 0; i < vec.size(); i++) {
 cout << vec[i] << endl;

}

Big-O Notation

● Big-O notation is a quantitative way to
describe the runtime of a piece of code.

● Works by dropping constants and low-order
growth terms.

● For example, this code runs in time O(n2):

for (int i = 0; i < vec.size(); i++) {
 for (int j = 0; j < vec.size(); j++) {
 cout << (vec[i] + vec[j]) << endl;
 }
}

Sorting Algorithms

● The sorting problem is to take in a list
of things (integers, strings, etc.) and
rearrange them into sorted order.

● Last time, we saw selection sort, an
algorithm that runs in time O(n2).

● This means that doubling the objects of
elements to sort will (roughly) quadruple
the time required.

● Our question for today: can we sort
numbers faster than this?

New Stuff!

Another Idea: Insertion Sort

7 2 1 64

Another Idea: Insertion Sort

2 1 64 7

Another Idea: Insertion Sort

2 1 674

Another Idea: Insertion Sort

2 6741

Another Idea: Insertion Sort

2 641 7

/**
 * Sorts the specified vector using insertion sort.
 *
 * @param v The vector to sort.
 */
void insertionSort(Vector<int>& v) {
 for (int i = 0; i < v.size(); i++) {
 /* Scan backwards until either (1) there is no
 * preceding element or the preceding element is
 * no bigger than us.
 */
 for (int j = i – 1; j >= 0; j--) {
 if (v[j] <= v[j + 1]) break;

 /* Swap this element back one step. */
 swap(v[j], v[j + 1]);
 }
 }
}

Selection Sort vs Insertion Sort
Size Selection Sort Insertion Sort

10000 0.304 0.160

20000 1.218 0.630

30000 2.790 1.427

40000 4.646 2.520

50000 7.395 4.181

60000 10.584 5.635

70000 14.149 8.143

80000 18.674 10.333

90000 23.165 12.832

Of insertion sort and selection sort:

1. Which algorithm runs does more work at the start?
2. Which algorithm runs does more work at the end?

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

T(½n) ≈ ¼T(n) T(½n) ≈ ¼T(n)

(n / 2)2 = n2 / 4

The Key Insight: Merge

1 2 3 4 5 6 7 8 9 10

Each step makes a
single comparison and
reduces the number of

elements by one.

If there are n total
elements, this algorithm

runs in time O(n).

Each step makes a
single comparison and
reduces the number of

elements by one.

If there are n total
elements, this algorithm

runs in time O(n).

/**
 * Given two queues of elements in sorted order, merges them together
 * into a single sorted sequence.
 *
 * This can easily be adapted to work with Vectors or other types of
 * sequences, but I thought it was easiest using Queues.
 *
 * @param one The first sorted queue.
 * @param two The second sorted queue.
 * @return A single sorted queue holding all elements of one and two.
 */
Queue<int> merge(Queue<int>& one, Queue<int>& two) {
 Queue<int> result;

 /* Keep comparing the first elements of each queue against one
 * another until one queue is exhausted.
 */
 while (!one.isEmpty() && !two.isEmpty()) {
 if (one.peek() < two.peek()) result.enqueue(one.dequeue());
 else result.enqueue(two.dequeue());
 }

 /* Add all remaining elements of the other queue to the result. */
 while (!one.isEmpty()) result.enqueue(one.dequeue());
 while (!two.isEmpty()) result.enqueue(two.dequeue());

 return result;
}

“Split Sort”
void splitSort(Vector<int>& v) {
 /* Split the vector in half */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int j = v.size() / 2; j < v.size(); j++) {
 right += v[i];
 }

 /* Sort each half. */
 insertionSort(left);
 insertionSort(right);

 /* Merge them back together. */
 merge(left, right, v);
}

Performance Comparison

Size Selection Sort Insertion Sort “Split Sort”

10000 0.304 0.160 0.161

20000 1.218 0.630 0.387

30000 2.790 1.427 0.726

40000 4.646 2.520 1.285

50000 7.395 4.181 2.719

60000 10.584 5.635 2.897

70000 14.149 8.143 3.939

80000 18.674 10.333 5.079

90000 23.165 12.832 6.375

Time-Out for Announcements!

Assignment 4

● Reminder: Assignment 4 is due one
week from Friday.
● Following the assignment timetable we

suggested, you should try to be done with
the Doctors Without Orders problem by the
end of the evening and start working on
Disaster Planning.

● Again, remember that the midterm is coming
up right after the assignment due date, so
this is probably not a good place to use late
days.

Practice Midterm Exam

● We’ll be holding a practice midterm exam
on Monday, February 13th from 7PM –
10PM, in Hewlett 200.

● It’s held under realistic conditions and is
a fantastic way to prepare for the exam.
You should plan to attend this unless
you have a compelling reason not to
do so.

● We’ll have more details about the
midterm exam on Friday.

Honor Code Reminder

● The good news is that the overwhelming majority of
you are honest and hardworking.

● The bad news is that some of you turned in Assignment
2 submissions that are clearly not your own work.

● We take the Honor Code seriously in this course.
We’ll be writing up these cases and submitting them to
the Office of Community Standards.
● Standard sanction for a first offense is many hours of

community service, an academic integrity seminar, and a
possible suspension.

● Please ask for help if you need it. That’s what we’re
here for!

More Assorted Sorts of Sorts!

A Better Idea

● We can speed up insertion sort by almost a
factor of two by splitting the array in half,
sorting each part independently, and
merging the results together.

● So why not split into fourths? That would
give a 4× improvement.

● So why not split into eighths? That would
give an 8× improvement.

● Question: What happens if we never stop
splitting?

High-Level Idea

● A recursive sorting algorithm!
● Base Case:

● An empty or single-element list is already
sorted.

● Recursive step:
● Break the list in half and recursively sort

each part.
● Use merge to combine them back into a single

sorted list.
● This algorithm is called mergesort.

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) return;

 /* Split v into two subvectors. */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

What is the complexity of mergesort?

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) return;

 /* Split v into two subvectors. */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

O(n)
work

O(n)
work

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) return;

 /* Split v into two subvectors. */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

A Graphical Intuition

O(n)

O(n)

O(n)

O(n)

O(n)

How many levels are there?

Slicing and Dicing

● After zero recursive calls: n
● After one recursive call: n / 2
● After two recursive calls: n / 4
● After three recursive calls: n / 8

…
● After k recursive calls: n / 2k

Cutting in Half

● After k recursive calls, there are n / 2k
elements left.

● Mergesort stops recursing when there are zero
or one elements left.

● Solving for the number of levels:

n / 2k = 1

n = 2k

log2 n = k

● So mergesort recurses log2 n levels deep.

A Graphical Intuition

O(n)

O(n)

O(n)

O(n)

O(n)

O(n log n)

Mergesort Times

Size Selection Sort Insertion Sort “Split Sort” Mergesort

10000 0.304 0.160 0.161 0.006

20000 1.218 0.630 0.387 0.010

30000 2.790 1.427 0.726 0.017

40000 4.646 2.520 1.285 0.021

50000 7.395 4.181 2.719 0.028

60000 10.584 5.635 2.897 0.035

70000 14.149 8.143 3.939 0.041

80000 18.674 10.333 5.079 0.042

90000 23.165 12.832 6.375 0.048

Can we do Better?

● Mergesort is O(n log n), which is faster
than insertion sort’s O(n2) runtime.

● Can we do better than this?
● In general, no: comparison-based sorts

cannot have a worst-case runtime better
than O(n log n).

● In the worst case, we can only get
faster by a constant factor!

● What might that look like?

An Interesting Observation

● Big-O notation talks about long-term growth, but
says nothing about small inputs.

● For small inputs, insertion sort can be faster than
mergesort.

R
u

n
ti

m
e

Input Size

Mergesort

Insertion
Sort

Hybrid Sorting Algorithms

● Modify the mergesort algorithm to
switch to insertion sort when the input
gets sufficiently small.

● This is called a hybrid sorting
algorithm.

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
 if (v.size() <= kCutoffSize) {
 insertionSort(v);
 } else {
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 hybridMergesort(left);
 hybridMergesort(right);

 merge(left, right, v);
 }
}

Runtime for Hybrid Mergesort
Size Mergesort Hybrid

Mergesort

100000 0.063 0.019

300000 0.176 0.061

500000 0.283 0.091

700000 0.396 0.130

900000 0.510 0.165

1100000 0.608 0.223

1300000 0.703 0.246

1500000 0.844 0.28

1700000 0.995 0.326

1900000 1.070 0.355

Hybrid Sorts in Practice

● Introspective Sort (Introsort)
● Based on three sorting algorithms: quicksort,

heapsort, and insertion sort.
● Quicksort runs in time O(n log n) on average,

but in the worst case runs in time O(n2).
● Heapsort runs in time O(n log n) and is very

memory-efficient. You’ll see it on Assignment
5!

● Uses insertion sort for small inputs.

Runtime for Introsort
Size Mergesort Hybrid

Mergesort
Introsort

100000 0.063 0.019 0.009

300000 0.176 0.061 0.028

500000 0.283 0.091 0.043

700000 0.396 0.130 0.060

900000 0.510 0.165 0.078

1100000 0.608 0.223 0.092

1300000 0.703 0.246 0.107

1500000 0.844 0.28 0.123

1700000 0.995 0.326 0.139

1900000 1.070 0.355 0.158

Why All This Matters

● Big-O notation gives us a quantitive way
to predict runtimes.

● Those predictions provide a quantitive
intuition for how to improve our
algorithms.

● Understanding the nuances of big-O
notation then leads us to design
algorithms that are better than the sum
of their parts.

Next Time

● Designing Abstractions
● How do you build new container classes?

● Class Design
● What do classes look like in C++?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

