
  

Algorithmic Analysis and Sorting
Part Two



  

A former student of mine 
(Montse Cordero) is studying 
different methods of teaching 

how to divide fractions.

A key step in her analysis is 
looking at the the 

computational complexity of 
the different approaches 

using big-O notation!
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Recap from Last Time



  

Big-O Notation

● Big-O notation is a quantitative way to 
describe the runtime of a piece of code.

● Works by dropping constants and low-order 
growth terms.

● For example, this code runs in time O(n):

for (int i = 0; i < vec.size(); i++) {
  cout << vec[i] << endl;         

}                                     

                                         



  

Big-O Notation

● Big-O notation is a quantitative way to 
describe the runtime of a piece of code.

● Works by dropping constants and low-order 
growth terms.

● For example, this code runs in time O(n2):

for (int i = 0; i < vec.size(); i++) {    
    for (int j = 0; j < vec.size(); j++) {
        cout << (vec[i] + vec[j]) << endl;
    }                                     
}                                         



  

Sorting Algorithms

● The sorting problem is to take in a list 
of things (integers, strings, etc.) and 
rearrange them into sorted order.

● Last time, we saw selection sort, an 
algorithm that runs in time O(n2).

● This means that doubling the objects of 
elements to sort will (roughly) quadruple 
the time required.

● Our question for today: can we sort 
numbers faster than this?



  

New Stuff!



  

Another Idea: Insertion Sort
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/**
 * Sorts the specified vector using insertion sort.
 *
 * @param v The vector to sort.
 */
void insertionSort(Vector<int>& v) {
  for (int i = 0; i < v.size(); i++) {
    /* Scan backwards until either (1) there is no
     * preceding element or the preceding element is
     * no bigger than us.
     */   
    for (int j = i – 1; j >= 0; j--) {
      if (v[j] <= v[j + 1]) break;

      /* Swap this element back one step. */
      swap(v[j], v[j + 1]);
    }
  }
}



  

How Fast is Insertion Sort?
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How Fast is Insertion Sort?
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Work done: O(n)
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How Fast is Insertion Sort?

6 7421
Work done: O(n2)



  

Selection Sort vs Insertion Sort
Size Selection Sort Insertion Sort

10000 0.304 0.160

20000 1.218 0.630

30000 2.790 1.427

40000 4.646 2.520

50000 7.395 4.181

60000 10.584 5.635

70000 14.149 8.143

80000 18.674 10.333

90000 23.165 12.832



  

Of insertion sort and selection sort:

1. Which algorithm runs does more work at the start?
2. Which algorithm runs does more work at the end?
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The Key Insight: Merge
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Each step makes a 
single comparison and 
reduces the number of 

elements by one.
 

If there are n total 
elements, this algorithm 

runs in time O(n).
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/**
 * Given two queues of elements in sorted order, merges them together
 * into a single sorted sequence.
 *
 * This can easily be adapted to work with Vectors or other types of
 * sequences, but I thought it was easiest using Queues.
 *
 * @param one The first sorted queue.
 * @param two The second sorted queue.
 * @return A single sorted queue holding all elements of one and two.
 */
Queue<int> merge(Queue<int>& one, Queue<int>& two) {
  Queue<int> result;

  /* Keep comparing the first elements of each queue against one
   * another until one queue is exhausted.
   */
  while (!one.isEmpty() && !two.isEmpty()) {
    if (one.peek() < two.peek()) result.enqueue(one.dequeue());
    else result.enqueue(two.dequeue());
  }

  /* Add all remaining elements of the other queue to the result. */
  while (!one.isEmpty()) result.enqueue(one.dequeue());
  while (!two.isEmpty()) result.enqueue(two.dequeue());

  return result;
}
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“Split Sort”
void splitSort(Vector<int>& v) {  
    /* Split the vector in half */
    Vector<int> left, right;
    for (int i = 0; i < v.size() / 2; i++) {
        left += v[i];
    }
    for (int j = v.size() / 2; j < v.size(); j++) {
        right += v[i];
    }
 
    /* Sort each half. */
    insertionSort(left);
    insertionSort(right);
 
    /* Merge them back together. */
    merge(left, right, v);
}



  

Performance Comparison

Size Selection Sort Insertion Sort “Split Sort”

10000 0.304 0.160 0.161

20000 1.218 0.630 0.387

30000 2.790 1.427 0.726

40000 4.646 2.520 1.285

50000 7.395 4.181 2.719

60000 10.584 5.635 2.897

70000 14.149 8.143 3.939

80000 18.674 10.333 5.079

90000 23.165 12.832 6.375
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Time-Out for Announcements!



  

Assignment 4

● Reminder: Assignment 4 is due one 
week from Friday.
● Following the assignment timetable we 

suggested, you should try to be done with 
the Doctors Without Orders problem by the 
end of the evening and start working on 
Disaster Planning.

● Again, remember that the midterm is coming 
up right after the assignment due date, so 
this is probably not a good place to use late 
days.



  

Practice Midterm Exam

● We’ll be holding a practice midterm exam 
on Monday, February 13th from 7PM – 
10PM, in Hewlett 200.

● It’s held under realistic conditions and is 
a fantastic way to prepare for the exam. 
You should plan to attend this unless 
you have a compelling reason not to 
do so.

● We’ll have more details about the 
midterm exam on Friday.



  

Honor Code Reminder

● The good news is that the overwhelming majority of 
you are honest and hardworking.

● The bad news is that some of you turned in Assignment 
2 submissions that are clearly not your own work.

● We take the Honor Code seriously in this course. 
We’ll be writing up these cases and submitting them to 
the Office of Community Standards.
● Standard sanction for a first offense is many hours of 

community service, an academic integrity seminar, and a 
possible suspension.

● Please ask for help if you need it. That’s what we’re 
here for!



  

More Assorted Sorts of Sorts!



  

A Better Idea

● We can speed up insertion sort by almost a 
factor of two by splitting the array in half, 
sorting each part independently, and 
merging the results together.

● So why not split into fourths? That would 
give a 4× improvement.

● So why not split into eighths? That would 
give an 8× improvement.

● Question: What happens if we never stop 
splitting?
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High-Level Idea

● A recursive sorting algorithm!
● Base Case:

● An empty or single-element list is already 
sorted.

● Recursive step:
● Break the list in half and recursively sort 

each part.
● Use merge to combine them back into a single 

sorted list.
● This algorithm is called mergesort.



  

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) return;

   /* Split v into two subvectors. */
   Vector<int> left, right;
   for (int i = 0; i < v.size() / 2; i++) {
       left += v[i];
   }
   for (int i = v.size() / 2; i < v.size(); i++) {
       right += v[i];
   }

   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}



  

What is the complexity of mergesort?
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Slicing and Dicing

● After zero recursive calls: n
● After one recursive call: n / 2
● After two recursive calls: n / 4
● After three recursive calls: n / 8

…
● After k recursive calls: n / 2k



  

Cutting in Half

● After k recursive calls, there are n / 2k 
elements left.

● Mergesort stops recursing when there are zero 
or one elements left.

● Solving for the number of levels:

n / 2k = 1  

n = 2k  

log2 n = k  

● So mergesort recurses log2 n levels deep.



  

A Graphical Intuition
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O(n log n)



  

Mergesort Times

Size Selection Sort Insertion Sort “Split Sort” Mergesort

10000 0.304 0.160 0.161 0.006

20000 1.218 0.630 0.387 0.010

30000 2.790 1.427 0.726 0.017

40000 4.646 2.520 1.285 0.021

50000 7.395 4.181 2.719 0.028

60000 10.584 5.635 2.897 0.035

70000 14.149 8.143 3.939 0.041

80000 18.674 10.333 5.079 0.042

90000 23.165 12.832 6.375 0.048
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Can we do Better?

● Mergesort is O(n log n), which is faster 
than insertion sort’s O(n2) runtime.

● Can we do better than this?
● In general, no: comparison-based sorts 

cannot have a worst-case runtime better 
than O(n log n).

● In the worst case, we can only get 
faster by a constant factor!

● What might that look like?



  

An Interesting Observation

● Big-O notation talks about long-term growth, but 
says nothing about small inputs.

● For small inputs, insertion sort can be faster than 
mergesort.

R
u

n
ti

m
e

Input Size

Mergesort

Insertion 
Sort



  

Hybrid Sorting Algorithms

● Modify the mergesort algorithm to 
switch to insertion sort when the input 
gets sufficiently small.

● This is called a hybrid sorting 
algorithm.



  

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
   if (v.size() <= kCutoffSize) { 
      insertionSort(v); 
   } else { 
       Vector<int> left, right;
       for (int i = 0; i < v.size() / 2; i++) {
           left += v[i];
       }
       for (int i = v.size() / 2; i < v.size(); i++) {
           right += v[i];
       }
    
       hybridMergesort(left);
       hybridMergesort(right);
     
       merge(left, right, v);
    }
}



  

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
   if (v.size() <= kCutoffSize) { 
      insertionSort(v); 
   } else { 
       Vector<int> left, right;
       for (int i = 0; i < v.size() / 2; i++) {
           left += v[i];
       }
       for (int i = v.size() / 2; i < v.size(); i++) {
           right += v[i];
       }
    
       hybridMergesort(left);
       hybridMergesort(right);
     
       merge(left, right, v);
    }
}



  

Runtime for Hybrid Mergesort
Size Mergesort Hybrid 

Mergesort

100000 0.063 0.019

300000 0.176 0.061

500000 0.283 0.091

700000 0.396 0.130

900000 0.510 0.165

1100000 0.608 0.223

1300000 0.703 0.246

1500000 0.844 0.28

1700000 0.995 0.326

1900000 1.070 0.355



  

Hybrid Sorts in Practice

● Introspective Sort (Introsort)
● Based on three sorting algorithms: quicksort, 

heapsort, and insertion sort.
● Quicksort runs in time O(n log n) on average, 

but in the worst case runs in time O(n2).
● Heapsort runs in time O(n log n) and is very 

memory-efficient. You’ll see it on Assignment 
5!

● Uses insertion sort for small inputs.



  

Runtime for Introsort
Size Mergesort Hybrid 

Mergesort
Introsort

100000 0.063 0.019 0.009

300000 0.176 0.061 0.028

500000 0.283 0.091 0.043

700000 0.396 0.130 0.060

900000 0.510 0.165 0.078

1100000 0.608 0.223 0.092

1300000 0.703 0.246 0.107

1500000 0.844 0.28 0.123

1700000 0.995 0.326 0.139

1900000 1.070 0.355 0.158



  

Why All This Matters

● Big-O notation gives us a quantitive way 
to predict runtimes.

● Those predictions provide a quantitive 
intuition for how to improve our 
algorithms.

● Understanding the nuances of big-O 
notation then leads us to design 
algorithms that are better than the sum 
of their parts.



  

Next Time

● Designing Abstractions
● How do you build new container classes?

● Class Design
● What do classes look like in C++?
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