Algorithmic Analysis and Sorting Part One

Fundamental Question:

How can we compare solutions to problems?

One Idea: Runtime

Runtime is Noisy

- Runtime is highly sensitive to which computer you're using.
- Runtime is highly sensitive to which inputs you're testing.
- Runtime is highly sensitive to external factors.
bool linearSearch(const string\& str, char ch) \{ for (int $i=0 ; i<s t r . l e n g t h() ; i++)$ \{ if (str[i] == ch) \{ return true; \}
\}
return false;
\}

Work Done: At most $k_{0} n+k_{1}$

Big Observations

- Don't need to explicitly compute these constants.
- Whether runtime is $4 n+10$ or $100 n+137$, runtime is still proportional to input size.
- Can just plot the runtime to obtain actual values.
- Only the dominant term matters.
- For both $4 n+1000$ and $n+137$, for very large n most of the runtime is explained by n.
- Is there a concise way of describing this?

Big-O Notation

- Ignore everything except the dominant growth term, including constant factors.
- Examples:
- $4 n+4=\mathbf{O}(n)$
- $137 n+271=\mathbf{O (n)}$
- $n^{2}+3 n+4=\mathbf{O}\left(\boldsymbol{n}^{2}\right)$
- $2^{n}+n^{3}=\mathbf{O}\left(2^{n}\right)$

For the mathematically inclined:

$$
f(n)=O(g(n)) \text { if }
$$

$$
\exists n_{0} \in \mathbb{R} . \exists c \in \mathbb{R} . \forall n \geq n_{0 .} f(n) \leq c|g(n)|
$$

Algorithmic Analysis with Big-O

double average(const Vector<int>\& vec) \{ double total = 0.0;
for (int $i=0 ; i<v e c . s i z e() ; i++)$ \{ total += vec[i];
\}
return total / vec.size();

O(n)

A More Interesting Example

bool linearSearch(const string\& str, char ch) \{
for (int $i=0 ; i<s t r . l e n g t h() ; i++)$ \{ if (str[i] == ch) \{
return true;
\}
\}
return false;
\}

How do we analyze this?

Types of Analysis

- Worst-Case Analysis
- What's the worst possible runtime for the algorithm?
- Useful for "sleeping well at night."
- Best-Case Analysis
- What's the best possible runtime for the algorithm?
- Useful to see if the algorithm performs well in some cases.
- Average-Case Analysis
- What's the average runtime for the algorithm?
- Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

Types of Analysis

- Worst-Case Analysis
- What's the worst possible runtime for the algorithm?
- Useful for "sleeping well at night."

Best-Case Analysis
What's the best possible runtime for the algorithm?
Useful to see if the algorithm performs well in some cases.
Average-Case Analysis
What's the average runtime for the algorithm?
Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

A More Interesting Example

bool linearSearch(const string\& str, char ch) \{ for (int i = 0; i < str.length(); i++) \{ if (str[i] == ch) \{
return true;
\}
\}
return false;
\}
O(n)

Determining if a Character is a Letter

bool isAlpha(char ch) \{
return (ch >= 'A' \&\& ch <= 'Z') ||
(ch >= 'a' \&\& ch <= 'z');
\}

O(1)

What Can Big-O Tell Us?

- Long-term behavior of a function.
- If algorithm A has runtime $O(n)$ and algorithm B has runtime $O\left(n^{2}\right)$, for very large inputs algorithm A will always be faster.
- If algorithm A has runtime $O(n)$, for large inputs, doubling the size of the input doubles the runtime.

What Can't Big-O Tell Us?

- The actual runtime of a function.
- $10^{100} n=O(n)$
- $10^{-100} n=\mathrm{O}(n)$
- How a function behaves on small inputs.
- $n^{3}=O\left(n^{3}\right)$
- $10^{6}=O(1)$

Growth Rates, Part One

Growth Rates, Part Two

250
—O(n)

- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$

200

150

Growth Rates, Part Three

To Give You A Better Sense...

Comparison of Runtimes

(assuming 1 operation $=1$ nanosecond)

Size	1	$\log _{2} \mathrm{n}$	n	$\mathrm{n} \log _{2} \mathrm{n}$	n^{2}	n^{3}	2^{n}
1000	1 ns	9.966 ns	$1 \mu \mathrm{~s}$	$9.966 \mu \mathrm{~s}$	1 ms	1 s	$3.4 \times 10^{284} \mathrm{yr}$
2000	1 ns	10.966 ns	$2 \mu \mathrm{~s}$	$21.932 \mu \mathrm{~s}$	4 ms	8 s	Just... wow.
3000	1 ns	11.551 ns	$3 \mu \mathrm{~s}$	$34.652 \mu \mathrm{~s}$	9 ms	27 s	
4000	1 ns	11.966 ns	$4 \mu \mathrm{~s}$	$47.863 \mu \mathrm{~s}$	16 ms	1.067 min	
5000	1 ns	12.288 ns	$5 \mu \mathrm{~s}$	$61.439 \mu \mathrm{~s}$	25 ms	2.083 min	
6000	1 ns	12.551 ns	$6 \mu \mathrm{~s}$	$75.304 \mu \mathrm{~s}$	36 ms	3.6 min	
7000	1 ns	12.773 ns	$7 \mu \mathrm{~s}$	$89.412 \mu \mathrm{~s}$	49 ms	5.717 min	
8000	1 ns	12.966 ns	$8 \mu \mathrm{~s}$	$103.726 \mu \mathrm{~s}$	64 ms	8.533 min	
9000	1 ns	13.136 ns	$9 \mu \mathrm{~s}$	$118.221 \mu \mathrm{~s}$	81 ms	12.15 min	
10000	1 ns	13.288 ns	$10 \mu \mathrm{~s}$	$132.877 \mu \mathrm{~s}$	100 ms	16.667 min	
11000	1 ns	13.425 ns	$11 \mu \mathrm{~s}$	$147.677 \mu \mathrm{~s}$	121 ms	22.183 min	
12000	1 ns	13.551 ns	$12 \mu \mathrm{~s}$	$162.609 \mu \mathrm{~s}$	144 ms	28.8 min	
13000	1 ns	13.666 ns	$13 \mu \mathrm{~s}$	$177.661 \mu \mathrm{~s}$	169 ms	36.617 min	
14000	1 ns	13.773 ns	$14 \mu \mathrm{~s}$	$192.824 \mu \mathrm{~s}$	196 ms	45.733 min	

Summary of Big-O

- A means of describing the growth rate of a function.
- Ignores all but the leading term.
- Ignores constants.
- Allows for quantitative ranking of algorithms.
- Allows for quantitative reasoning about algorithms.

Time-Out for Announcements!

Assignment 4

- Assignment 4 (Recursion to the Rescue!) goes out today. It's due next Friday, February 17th at the start of class.
- We've pushed the due date for this assignment back a class period to give you a little more breathing room.
- You're encouraged to work in pairs on this assignment. These problems are great to discuss in a group.
- Start early! There's a suggested timetable on the front of the assignment handout that we think will help you keep on track.
- Be careful about taking late days here. The midterm is on the Tuesday after this assignment is due.
- Anton will be holding YEAH hours tonight from 7PM - 8PM in room 420-040. Highly recommended, as always!
- Assignment 3 was due today at 11:30. Feel free to use a late day if you need to, though keep in mind that you'll want to get a jump on Assignment 4.

Girl Code @Stanford

- This summer, I'll be running our fifth iteration of Girl Code @Stanford from July $10^{\text {th }}-$ July $21^{\text {st }}$.
- We invite high-school girls (primarily from low- to middle-income schools in majority-minority areas) to come to campus for two weeks to learn CS, meet researchers, and talk to folks from industry.
- We're looking for Stanford students to serve as "Workshop Assistants" during the program. We pay competitively (roughly \$3,000 over two weeks).
- Interested? Learn more and apply using this link:

https://goo.gl/forms/icYcRiX8PTgoVJOn1

All current Stanford students are invited to apply. Feel free to forward this link around!

Back to CS106B!

Sorting Algorithms

The Sorting Problem

- Given a list of elements, sort those elements in ascending order.
- There are many ways to solve this problem.
- What is the best way to solve this problem?
- We'll use big-O to find out!

An Initial Idea: Selection Sort

Selection Sort

- Find the smallest element and move it to the first position.
- Find the second-smallest element and move it to the second position.
- (etc.)

```
/**
    * Sorts the specified vector using the selection sort algorithm.
    *
    * @param elems The elements to sort.
    */
void selectionSort(Vector<int>& elems) {
    for (int index = 0; index < elems.size(); index++) {
        int smallestIndex = indexOfSmallest(elems, index);
        swap(elems[index], elems[smallestIndex]);
    }
}
/**
    * Given a vector and a starting point, returns the index of the smallest
    * element in that vector at or after the starting point
    *
    * @param elems The elements in question.
    * @param startPoint The starting index in the vector.
    * @return The index of the smallest element at or after that point
    * in the vector.
    */
int indexOfSmallest(const Vector<int>& elems, int startPoint) {
    int smallestIndex = startPoint;
    for (int i = startPoint + 1; i < elems.size(); i++) {
        if (elems[i] < elems[smallestIndex])
            smallestIndex = i;
    }
    return smallestIndex;
}
```


Analyzing Selection Sort

- How much work do we do for selection sort?
- To find the smallest value, we need to look at all n array elements.
- To find the second-smallest value, we need to look at $n-1$ array elements.
- To find the third-smallest value, we need to look at $n-2$ array elements.
- Work is $n+(n-1)+(n-2)+\ldots+1$.

$$
n+(n-1)+\ldots+2+1=n(n+1) / 2
$$

The Complexity of Selection Sort

$$
\begin{aligned}
& \mathrm{O}(n(n+1) / 2) \\
= & \mathrm{O}(n(n+1)) \\
= & \mathrm{O}\left(n^{2}+n\right) \\
= & \mathrm{O}\left(n^{2}\right)
\end{aligned}
$$

So selection sort runs in time $\mathbf{O}\left(\boldsymbol{n}^{2}\right)$.

Thinking About $\mathrm{O}\left(n^{2}\right)$

$$
\begin{array}{ll|l|l|l|l|l|l|l|llll}
14 & 6 & 3 & 9 & 7 & 16 & 2 & 15 \\
\hline & & & & & & & & & & & & \\
\hline
\end{array}
$$

Selection Sort Times

Size	Selection Sort
10000	0.304
20000	1.218
30000	2.790
40000	4.646
50000	7.395
60000	10.584
70000	14.149
80000	18.674
90000	23.165

Next Time

- Faster Sorting Algorithms
- Can you beat $\mathrm{O}\left(n^{2}\right)$ time?
- Hybrid Sorting Algorithms
- When might selection sort be useful?

