

Algorithmic Analysis and Sorting
Part One

Computers use roughly 3% of all the
electricity generated in the United States.

This electricity generation produces
around 826 megatons of CO₂ each year.

Reducing the need for computing power –
or using that power more wisely – could

have a big impact on CO₂ emissions.

Computers use roughly 3% of all the
electricity generated in the United States.

This electricity generation produces
around 826 megatons of CO₂ each year.

Reducing the need for computing power –
or using that power more wisely – could

have a big impact on CO₂ emissions.

Fundamental Question:

How can we compare solutions to
problems?

One Idea: Runtime

Runtime is Noisy

● Runtime is highly sensitive to which
computer you’re using.

● Runtime is highly sensitive to which
inputs you’re testing.

● Runtime is highly sensitive to external
factors.

bool linearSearch(const string& str, char ch) {
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

Work Done: At most k0n + k1

Big-Observations

● Don't need to explicitly compute these
constants.
● Whether runtime is 4n + 10 or 100n + 137,

runtime is still proportional to input size.
● Can just plot the runtime to obtain actual

values.
● Only the dominant term matters.

● For both 4n + 1000 and n + 137, for very large
n most of the runtime is explained by n.

● Is there a concise way of describing this?

Big-Observations

Big-ObservationsNotation

● Ignore everything except the dominant
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)

For the mathematically inclined:

f(n) = O(g(n)) if
∃n₀ ∈ . ∃ℝ c ∈ . ∀ℝ n ≥ n₀. f(n) ≤ c|g(n)|

For the mathematically inclined:

f(n) = O(g(n)) if
∃n₀ ∈ . ∃ℝ c ∈ . ∀ℝ n ≥ n₀. f(n) ≤ c|g(n)|

Algorithmic Analysis with Big-O

Algorithmic Analysis with Big-O

double average(const Vector<int>& vec) {
 double total = 0.0;
 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

Algorithmic Analysis with Big-O

double average(const Vector<int>& vec) {
 double total = 0.0;
 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

Algorithmic Analysis with Big-O

double average(const Vector<int>& vec) {
 double total = 0.0;
 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

O(n)

A More Interesting Example

A More Interesting Example

bool linearSearch(const string& str, char ch) {
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

How do we analyze this?

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some

cases.
● Average-Case Analysis

● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109,

CS161, CS365, or CS369N for more information!

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

Best-Case Analysis

What's the best possible runtime for the algorithm?

Useful to see if the algorithm performs well in some
cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109,
CS161, CS365, or CS369N for more information!

A More Interesting Example

bool linearSearch(const string& str, char ch) {
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

O(n)

Determining if a Character is a Letter

Determining if a Character is a Letter

bool isAlpha(char ch) {
 return (ch >= 'A' && ch <= 'Z') ||
 (ch >= 'a' && ch <= 'z');
}

Determining if a Character is a Letter

bool isAlpha(char ch) {
 return (ch >= 'A' && ch <= 'Z') ||
 (ch >= 'a' && ch <= 'z');
}

O(1)

What Can Big-O Tell Us?

● Long-term behavior of a function.
● If algorithm A has runtime O(n) and

algorithm B has runtime O(n2), for very large
inputs algorithm A will always be faster.

● If algorithm A has runtime O(n), for large
inputs, doubling the size of the input doubles
the runtime.

What Can't Big-O Tell Us?

● The actual runtime of a function.
● 10100n = O(n)
● 10-100n = O(n)

● How a function behaves on small inputs.
● n3 = O(n3)
● 106 = O(1)

0

2

4

6

8

10

12

14

16

Growth Rates, Part One

O(1)
O(log n)
O(n)

0

50

100

150

200

250

Growth Rates, Part Two

O(n)
O(n log n)
O(n²)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Growth Rates, Part Three

O(n²)
O(n³)
O(2ⁿ)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To Give You A Better Sense...

O(1)
O(log n)
O(n)
O(n log n)
O(n²)
O(n³)
O(2ⁿ)

Size 1 log₂ n n n log₂ n n² n³ 2ⁿ

1000 1ns 9.966ns 1μs 9.966μs 1ms 1s 3.4×10284 yr

2000 1ns 10.966ns 2μs 21.932μs 4ms 8s Just… wow.

3000 1ns 11.551ns 3μs 34.652μs 9ms 27s

4000 1ns 11.966ns 4μs 47.863μs 16ms 1.067min

5000 1ns 12.288ns 5μs 61.439μs 25ms 2.083min

6000 1ns 12.551ns 6μs 75.304μs 36ms 3.6min

7000 1ns 12.773ns 7μs 89.412μs 49ms 5.717min

8000 1ns 12.966ns 8μs 103.726μs 64ms 8.533min

9000 1ns 13.136ns 9μs 118.221μs 81ms 12.15min

10000 1ns 13.288ns 10μs 132.877μs 100ms 16.667min

11000 1ns 13.425ns 11μs 147.677μs 121ms 22.183min

12000 1ns 13.551ns 12μs 162.609μs 144ms 28.8min

13000 1ns 13.666ns 13μs 177.661μs 169ms 36.617min

14000 1ns 13.773ns 14μs 192.824μs 196ms 45.733min

Comparison of Runtimes
(assuming 1 operation = 1 nanosecond)

Summary of Big-O

● A means of describing the growth rate of
a function.

● Ignores all but the leading term.
● Ignores constants.
● Allows for quantitative ranking of

algorithms.
● Allows for quantitative reasoning about

algorithms.

Time-Out for Announcements!

Assignment 4

● Assignment 4 (Recursion to the Rescue!) goes out today.
It’s due next Friday, February 17th at the start of class.
● We’ve pushed the due date for this assignment back a class period

to give you a little more breathing room.
● You’re encouraged to work in pairs on this assignment. These

problems are great to discuss in a group.
● Start early! There’s a suggested timetable on the front of the

assignment handout that we think will help you keep on track.
● Be careful about taking late days here. The midterm is on the

Tuesday after this assignment is due.
● Anton will be holding YEAH hours tonight from 7PM – 8PM

in room 420-040. Highly recommended, as always!
● Assignment 3 was due today at 11:30. Feel free to use a late

day if you need to, though keep in mind that you’ll want to
get a jump on Assignment 4.

Girl Code @Stanford

● This summer, I’ll be running our fifth iteration of Girl
Code @Stanford from July 10th – July 21st.

● We invite high-school girls (primarily from low- to
middle-income schools in majority-minority areas) to
come to campus for two weeks to learn CS, meet
researchers, and talk to folks from industry.

● We’re looking for Stanford students to serve as
“Workshop Assistants” during the program. We pay
competitively (roughly $3,000 over two weeks).

● Interested? Learn more and apply using this link:

https://goo.gl/forms/icYcRiX8PTgoVJ0n1

All current Stanford students are invited to apply. Feel
free to forward this link around!

https://goo.gl/forms/icYcRiX8PTgoVJ0n1

Back to CS106B!

Sorting Algorithms

The Sorting Problem

● Given a list of elements, sort those
elements in ascending order.

● There are many ways to solve this
problem.

● What is the best way to solve this
problem?

● We'll use big-O to find out!

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

721 64

An Initial Idea: Selection Sort

721 64

An Initial Idea: Selection Sort

721 64

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

Selection Sort

● Find the smallest element and move it to
the first position.

● Find the second-smallest element and
move it to the second position.

● (etc.)

/**
 * Sorts the specified vector using the selection sort algorithm.
 *
 * @param elems The elements to sort.
 */
void selectionSort(Vector<int>& elems) {
 for (int index = 0; index < elems.size(); index++) {
 int smallestIndex = indexOfSmallest(elems, index);
 swap(elems[index], elems[smallestIndex]);
 }
}

/**
 * Given a vector and a starting point, returns the index of the smallest
 * element in that vector at or after the starting point
 *
 * @param elems The elements in question.
 * @param startPoint The starting index in the vector.
 * @return The index of the smallest element at or after that point
 * in the vector.
 */
int indexOfSmallest(const Vector<int>& elems, int startPoint) {
 int smallestIndex = startPoint;
 for (int i = startPoint + 1; i < elems.size(); i++) {
 if (elems[i] < elems[smallestIndex])
 smallestIndex = i;
 }
 return smallestIndex;
}

Analyzing Selection Sort

● How much work do we do for selection
sort?

● To find the smallest value, we need to
look at all n array elements.

● To find the second-smallest value, we
need to look at n – 1 array elements.

● To find the third-smallest value, we need
to look at n – 2 array elements.

● Work is n + (n – 1) + (n – 2) + … + 1.

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2

The Complexity of Selection Sort

 O(n (n + 1) / 2)

= O(n (n + 1))

= O(n2 + n)

= O(n2)

So selection sort runs in time O(n2).

Thinking About O(n2)

Thinking About O(n2)

14 6 3 9 7 16 2 15

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(2n) ≈ 4T(n)

Selection Sort Times

Size Selection Sort

10000 0.304

20000 1.218

30000 2.790

40000 4.646

50000 7.395

60000 10.584

70000 14.149

80000 18.674

90000 23.165

Next Time

● Faster Sorting Algorithms
● Can you beat O(n2) time?

● Hybrid Sorting Algorithms
● When might selection sort be useful?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

