Algorithmic Analysis and Sorting Part One

Computers use roughly 3% of all the electricity generated in the United States.

et.

This electricity generation produces around 826 megatons of CO₂ each year.

Reducing the need for computing power – or using that power more wisely – could have a big impact on CO₂ emissions.

Fundamental Question:

How can we compare solutions to problems?

One Idea: *Runtime*

Runtime is Noisy

- Runtime is highly sensitive to which computer you're using.
- Runtime is highly sensitive to which inputs you're testing.
- Runtime is highly sensitive to *external factors*.

```
bool linearSearch(const string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {
    if (str[i] == ch) {
      return true;
    }
  }
  return false;
}</pre>
```

```
Work Done: At most k_0 n + k_1
```

Big Observations

- Don't need to explicitly compute these constants.
 - Whether runtime is 4n + 10 or 100n + 137, runtime is still proportional to input size.
 - Can just plot the runtime to obtain actual values.
- Only the dominant term matters.
 - For both 4n + 1000 and n + 137, for very large n most of the runtime is explained by n.
- Is there a concise way of describing this?

Big-O

Big-O Notation

- Ignore *everything* except the dominant growth term, including constant factors.
- Examples:
 - 4n + 4 = 0(n)
 - 137n + 271 = O(n)
 - $n^2 + 3n + 4 = O(n^2)$
 - $2^n + n^3 = \mathbf{O(2^n)}$

For the mathematically inclined:

f(n) = O(g(n)) if $\exists n_0 \in \mathbb{R}. \exists c \in \mathbb{R}. \forall n \ge n_0. f(n) \le c |g(n)|$

```
double average(const Vector<int>& vec) {
   double total = 0.0;
   for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
   }
   return total / vec.size();</pre>
```

}

```
double average(const Vector<int>& vec) {
   double total = 0.0;
   for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
   }
   return total / vec.size();</pre>
```

O(n)

```
double average(const Vector<int>& vec) {
   double total = 0.0;
   for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
   }
   return total / vec.size();</pre>
```

A More Interesting Example

A More Interesting Example

```
bool linearSearch(const string& str, char ch) {
    for (int i = 0; i < str.length(); i++) {
        if (str[i] == ch) {
            return true;
        }
    }
    return false;
}</pre>
```

How do we analyze this?

Types of Analysis

- Worst-Case Analysis
 - What's the *worst* possible runtime for the algorithm?
 - Useful for "sleeping well at night."
- Best-Case Analysis
 - What's the *best* possible runtime for the algorithm?
 - Useful to see if the algorithm performs well in some cases.
- Average-Case Analysis
 - What's the *average* runtime for the algorithm?
 - Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

Types of Analysis

- Worst-Case Analysis
 - What's the *worst* possible runtime for the algorithm?
 - Useful for "sleeping well at night."

Best-Case Analysis

What's the *best* possible runtime for the algorithm? Useful to see if the algorithm performs well in some cases.

Average-Case Analysis

What's the *average* runtime for the algorithm?

Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

A More Interesting Example

```
bool linearSearch(const string& str, char ch) {
    for (int i = 0; i < str.length(); i++) {
        if (str[i] == ch) {
            return true;
        }
    }
    return false;
}
O(n)
</pre>
```

Determining if a Character is a Letter

Determining if a Character is a Letter

```
bool isAlpha(char ch) {
    return (ch >= 'A' && ch <= 'Z') ||
        (ch >= 'a' && ch <= 'z');
}</pre>
```

Determining if a Character is a Letter

```
bool isAlpha(char ch) {
    return (ch >= 'A' && ch <= 'Z') ||
        (ch >= 'a' && ch <= 'z');
}</pre>
```

```
0(1)
```

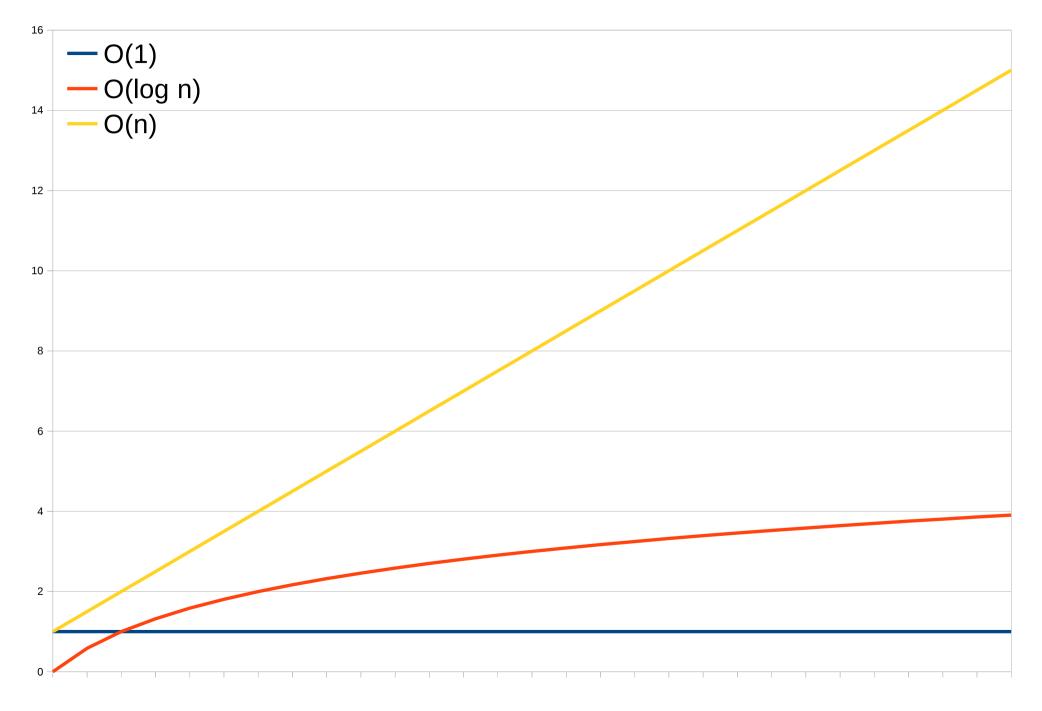
What Can Big-O Tell Us?

- Long-term behavior of a function.
 - If algorithm A has runtime O(n) and algorithm B has runtime $O(n^2)$, for very large inputs algorithm A will always be faster.
 - If algorithm A has runtime O(*n*), for large inputs, doubling the size of the input doubles the runtime.

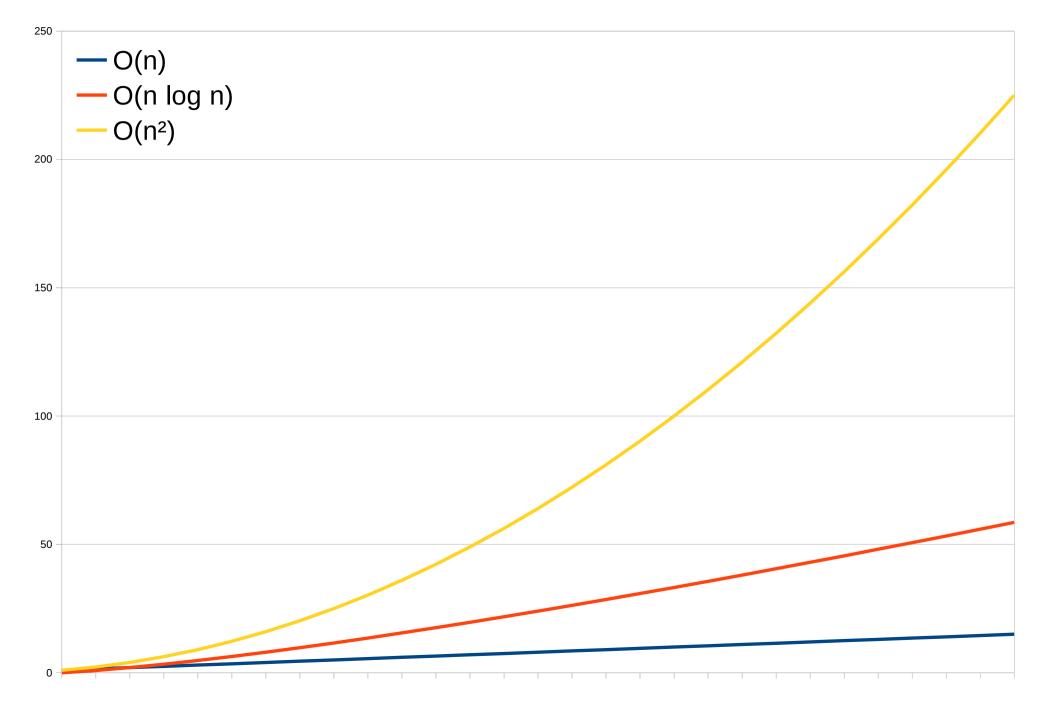
What Can't Big-O Tell Us?

- The actual runtime of a function.
 - $10^{100}n = O(n)$
 - $10^{-100}n = O(n)$
- How a function behaves on small inputs.
 - $n^3 = O(n^3)$
 - $10^6 = O(1)$

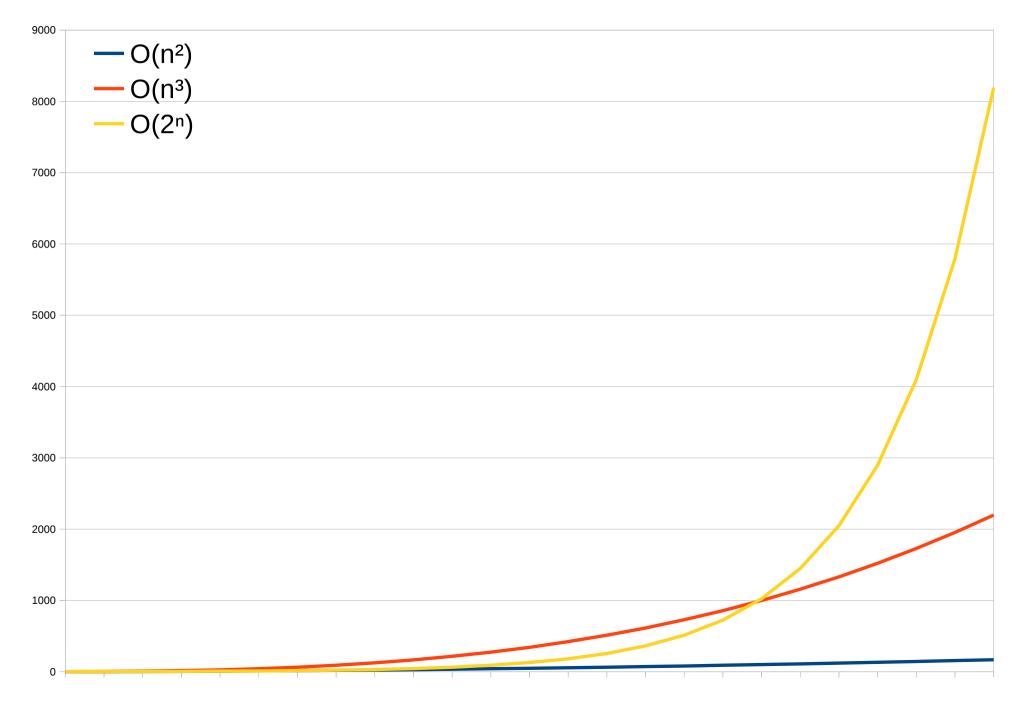
Growth Rates, Part One



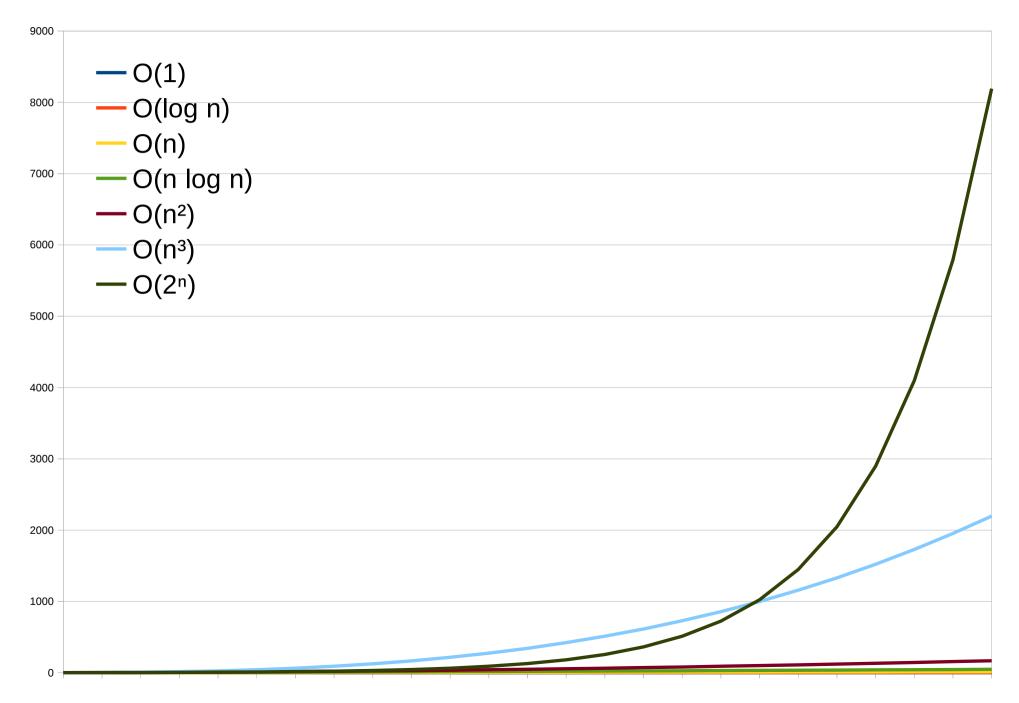
Growth Rates, Part Two



Growth Rates, Part Three



To Give You A Better Sense...



Comparison of Runtimes

(assuming 1 operation = 1 nanosecond)

Size	1	log2 n	n	n log2 n	n^2	n ³	2 ⁿ
1000	1ns	9.966ns	1µs	9.966µs	1ms	1s	$3.4 \times 10^{284} \text{ yr}$
2000	1ns	10.966ns	2µs	21.932µs	4ms	8s	Just wow.
3000	1ns	11.551ns	3µs	34.652µs	9ms	27s	
4000	1ns	11.966ns	4µs	47.863µs	16ms	1.067min	
5000	1ns	12.288ns	5µs	61.439µs	25ms	2.083min	
6000	1ns	12.551ns	6µs	75.304µs	36ms	3.6min	
7000	1ns	12.773ns	7µs	89.412µs	49ms	5.717min	
8000	1ns	12.966ns	8µs	103.726µs	64ms	8.533min	
9000	1ns	13.136ns	9µs	118.221µs	81ms	12.15min	
10000	1ns	13.288ns	10µs	132.877µs	100ms	16.667min	
11000	1ns	13.425ns	11µs	147.677µs	121ms	22.183min	
12000	1ns	13.551ns	12µs	162.609µs	144ms	28.8min	
13000	1ns	13.666ns	13µs	177.661µs	169ms	36.617min	
14000	1ns	13.773ns	14µs	192.824µs	196ms	45.733min	

Summary of Big-O

- A means of describing the growth rate of a function.
- Ignores all but the leading term.
- Ignores constants.
- Allows for quantitative ranking of algorithms.
- Allows for quantitative reasoning about algorithms.

Time-Out for Announcements!

Assignment 4

- Assignment 4 (*Recursion to the Rescue!*) goes out today. It's due next Friday, February 17th at the start of class.
 - We've pushed the due date for this assignment back a class period to give you a little more breathing room.
 - You're encouraged to work in pairs on this assignment. These problems are great to discuss in a group.
 - **Start early!** There's a suggested timetable on the front of the assignment handout that we think will help you keep on track.
 - **Be careful about taking late days here**. The midterm is on the Tuesday after this assignment is due.
- Anton will be holding YEAH hours tonight from 7PM 8PM in room 420-040. Highly recommended, as always!
- Assignment 3 was due today at 11:30. Feel free to use a late day if you need to, though keep in mind that you'll want to get a jump on Assignment 4.

Girl Code @Stanford

- This summer, I'll be running our fifth iteration of Girl Code @Stanford from July 10^{th} July 21^{st} .
- We invite high-school girls (primarily from low- to middle-income schools in majority-minority areas) to come to campus for two weeks to learn CS, meet researchers, and talk to folks from industry.
- We're looking for Stanford students to serve as "Workshop Assistants" during the program. We pay competitively (roughly \$3,000 over two weeks).
- Interested? Learn more and apply using this link:

https://goo.gl/forms/icYcRiX8PTgoVJ0n1

All current Stanford students are invited to apply. Feel free to forward this link around!

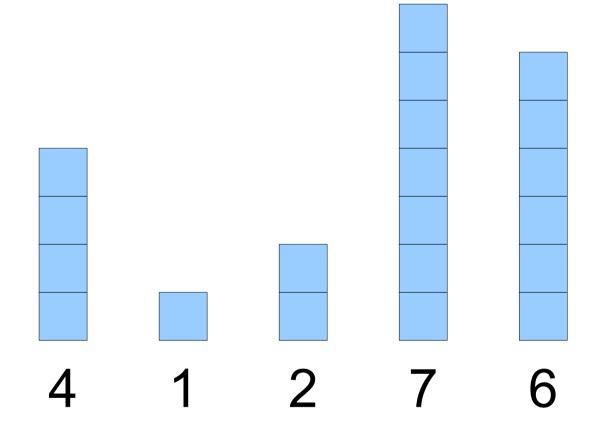
Back to CS106B!

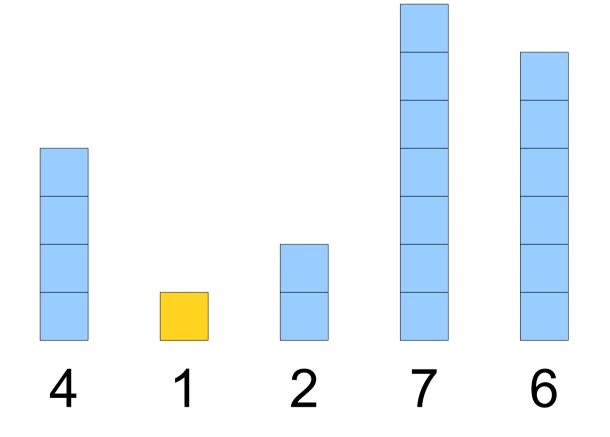
Sorting Algorithms

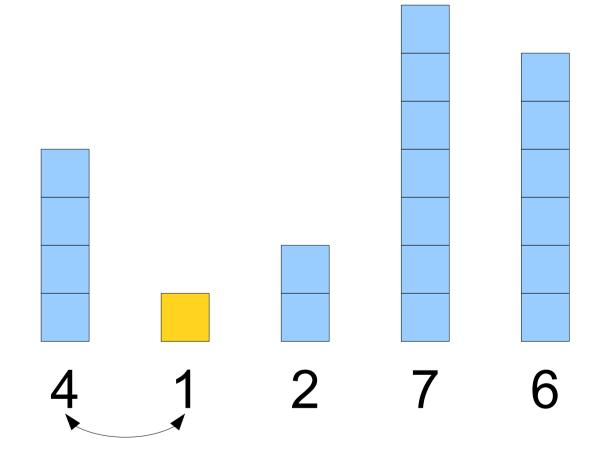
The Sorting Problem

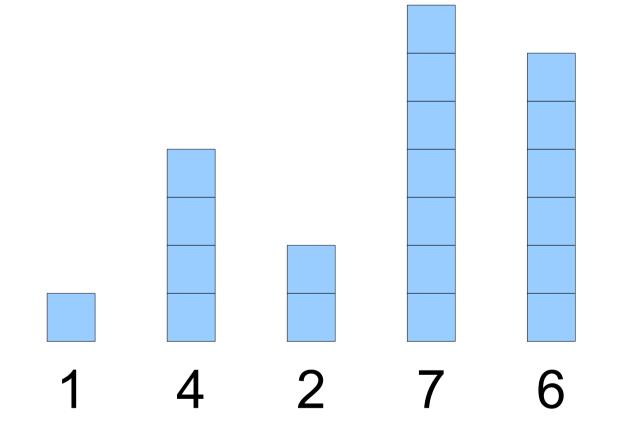
- Given a list of elements, sort those elements in ascending order.
- There are *many* ways to solve this problem.
- What is the **best** way to solve this problem?
- We'll use big-O to find out!

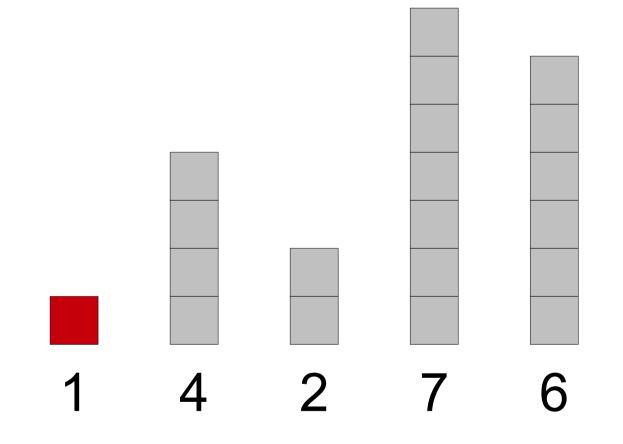
An Initial Idea: Selection Sort

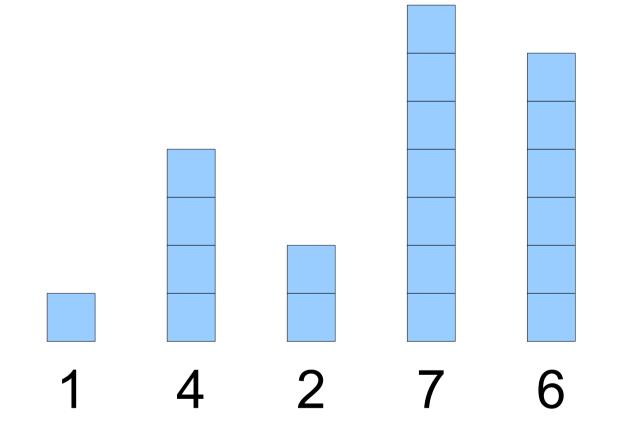


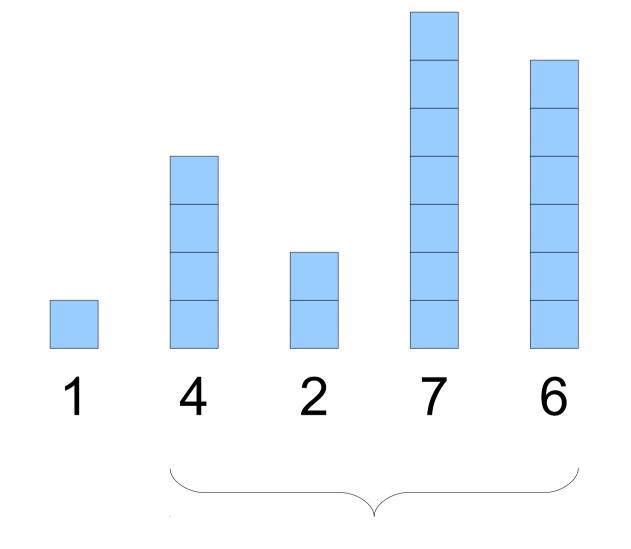


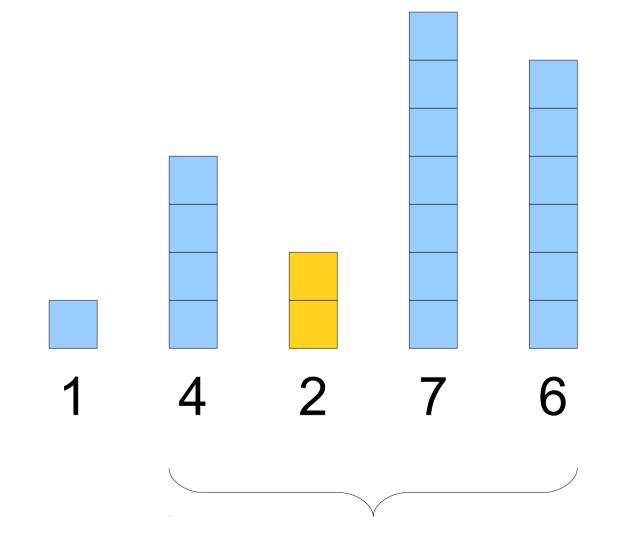


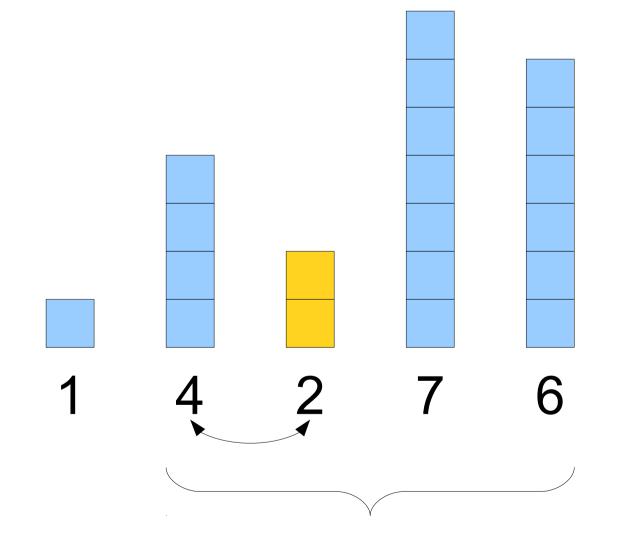


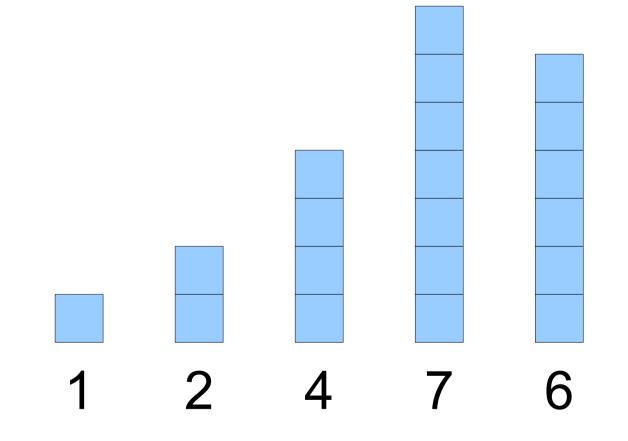


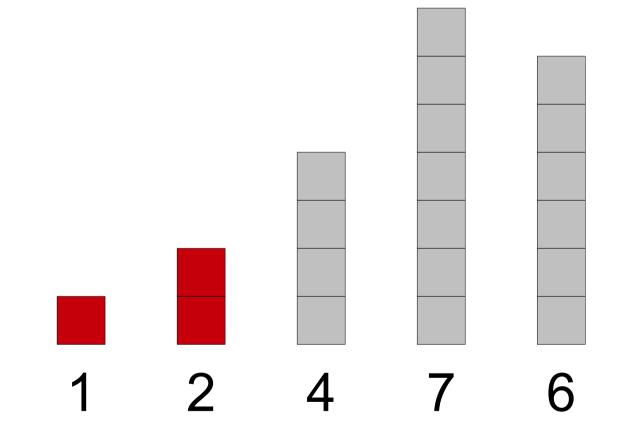


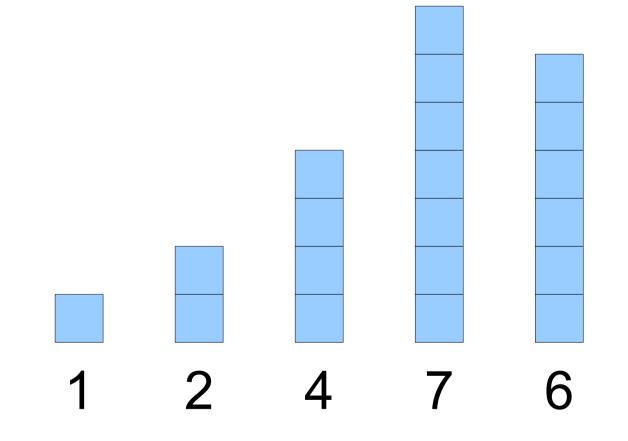


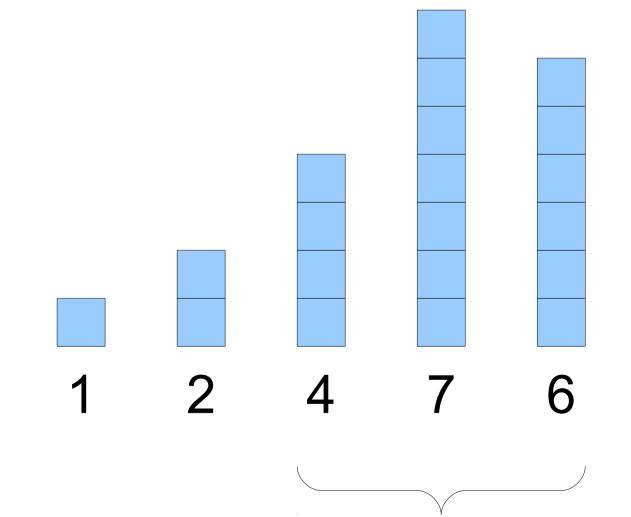


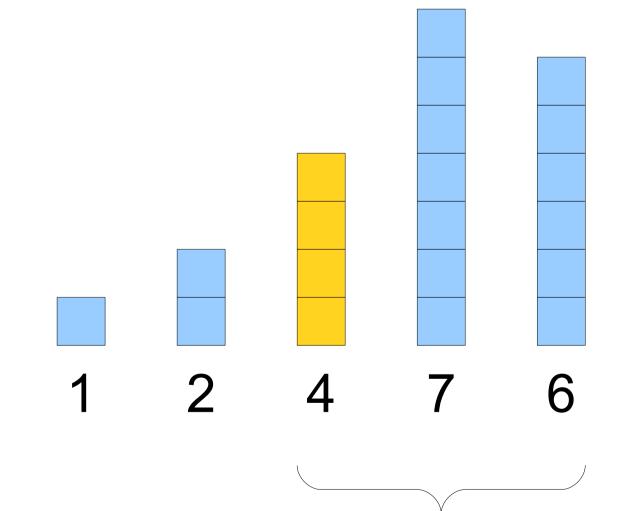


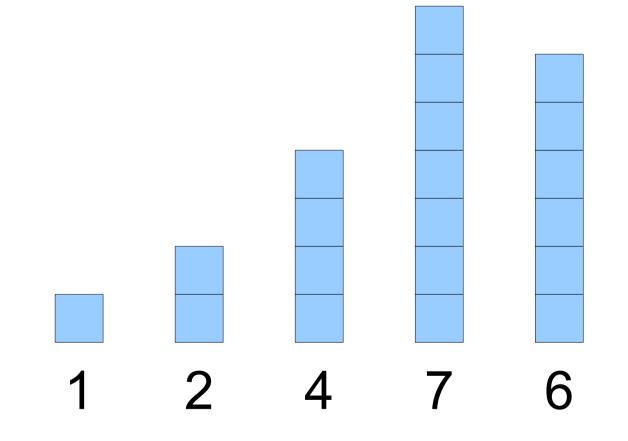


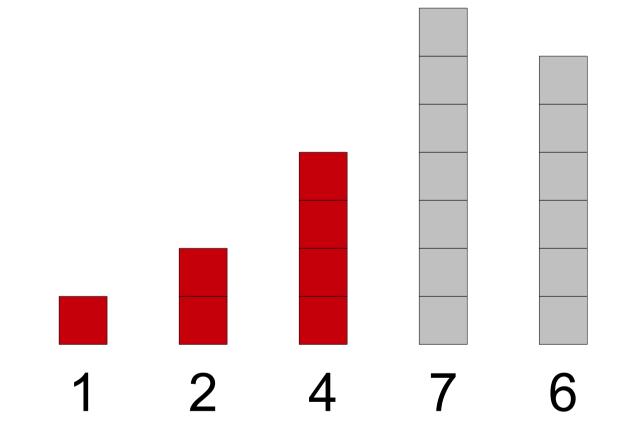


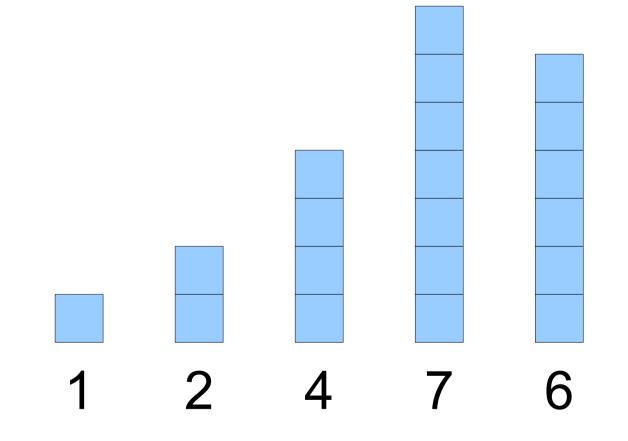


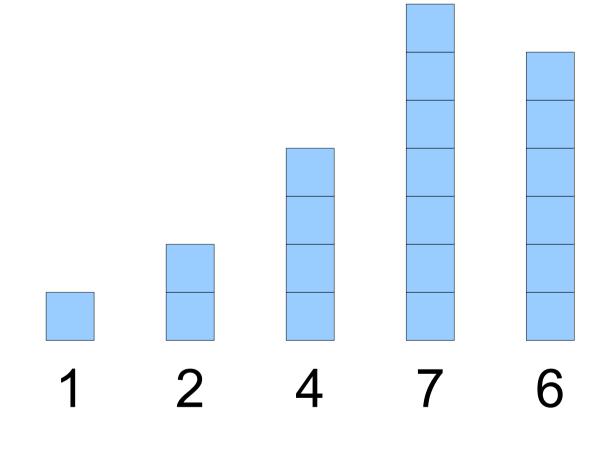


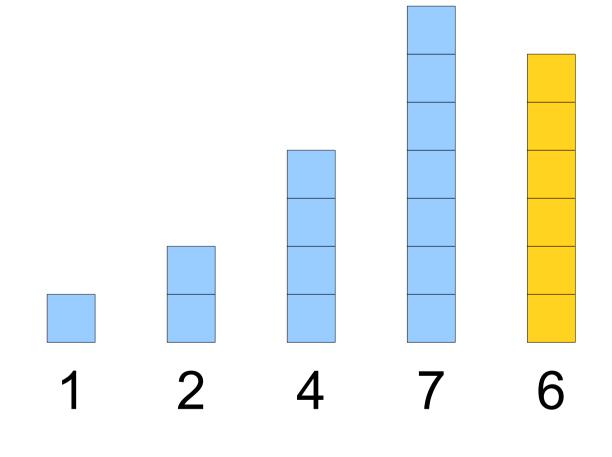


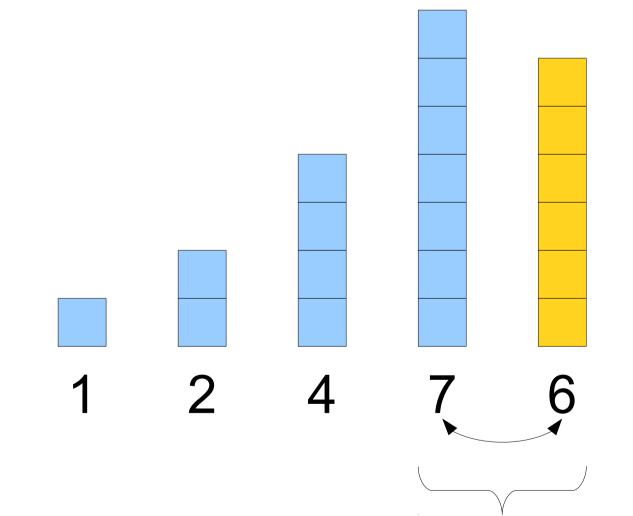


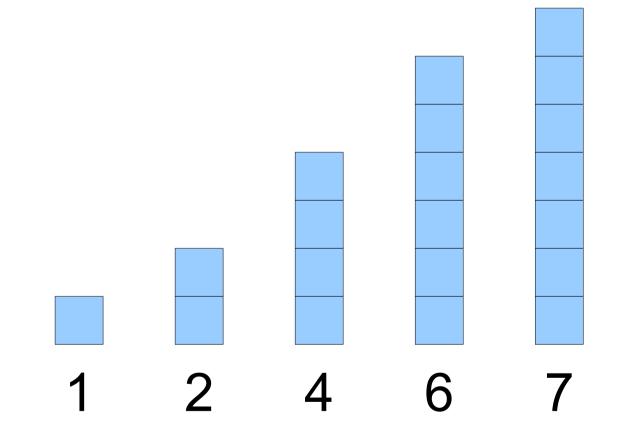


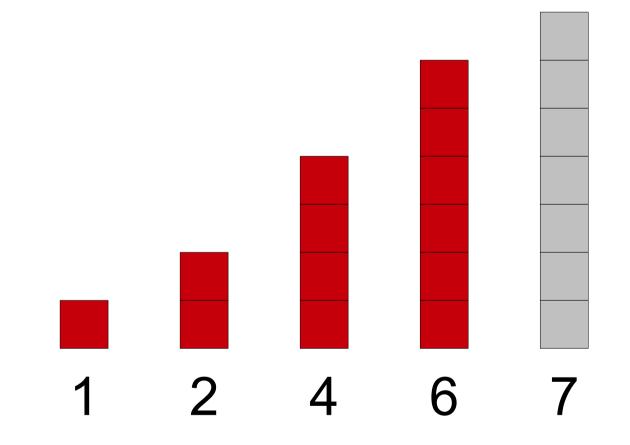


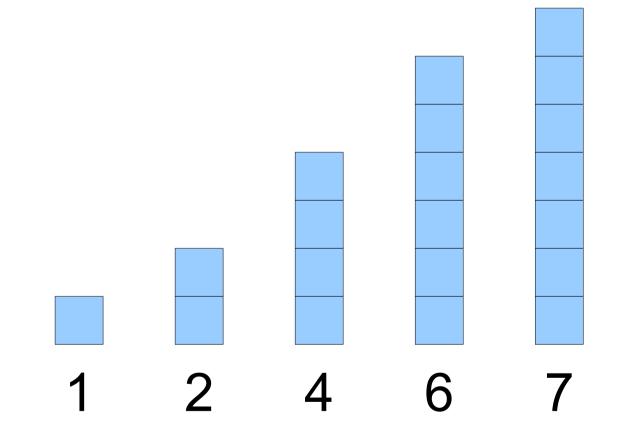


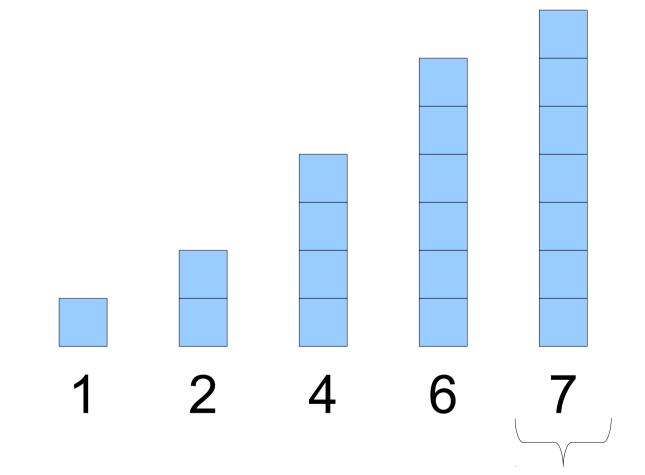


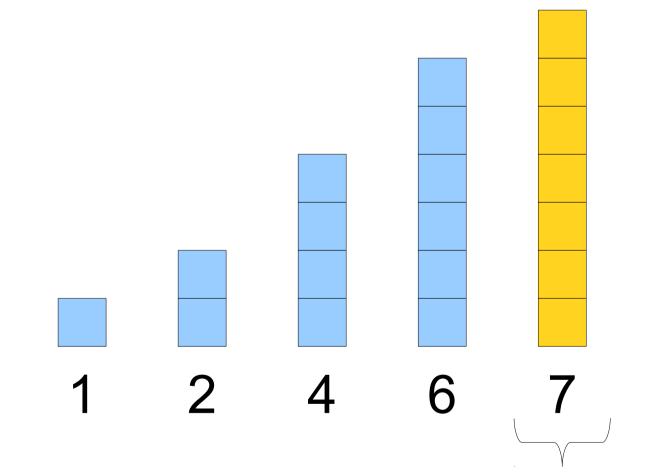


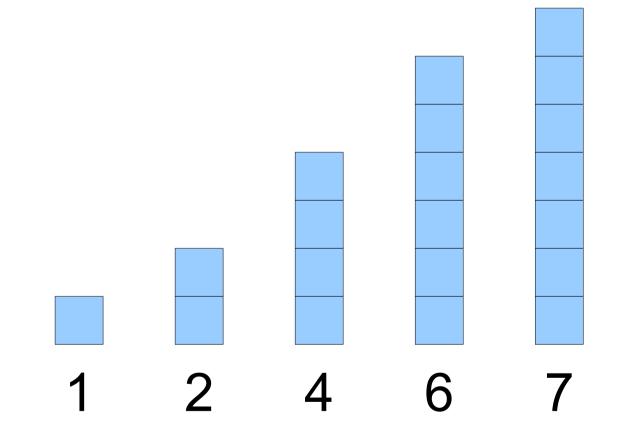


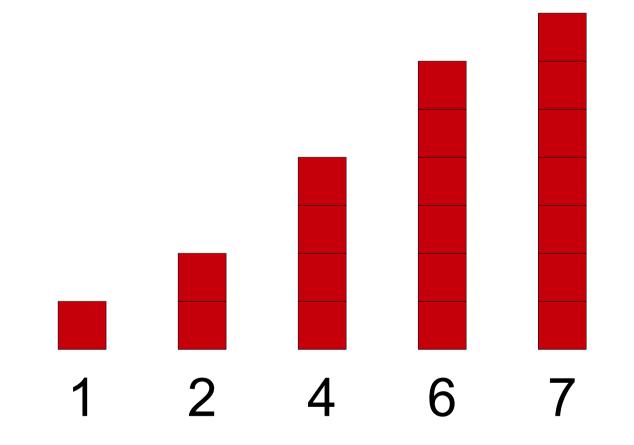












Selection Sort

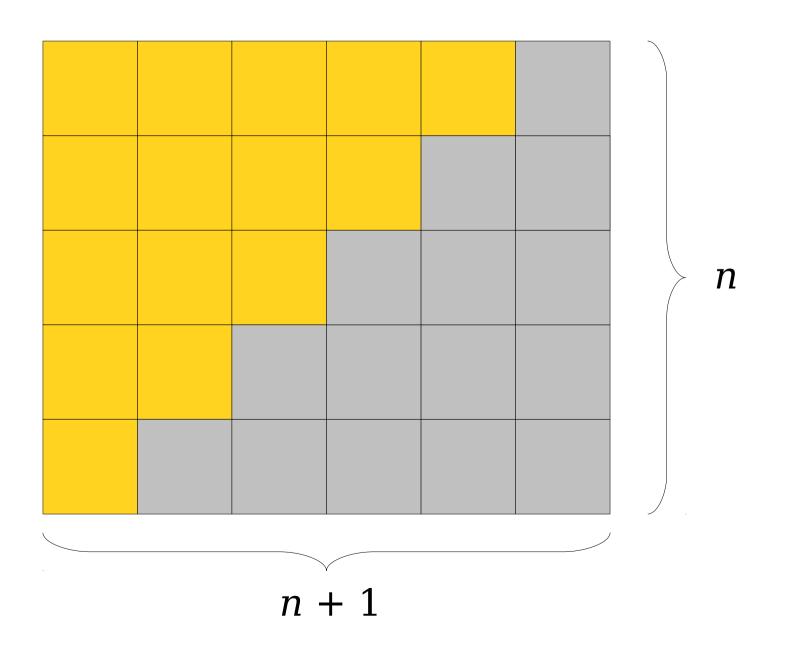
- Find the smallest element and move it to the first position.
- Find the second-smallest element and move it to the second position.
- (etc.)

```
/**
 * Sorts the specified vector using the selection sort algorithm.
 *
  Oparam elems The elements to sort.
 *
 */
void selectionSort(Vector<int>& elems) {
  for (int index = 0; index < elems.size(); index++) {</pre>
    int smallestIndex = indexOfSmallest(elems, index);
    swap(elems[index], elems[smallestIndex]);
/**
 * Given a vector and a starting point, returns the index of the smallest
 * element in that vector at or after the starting point
 *
 * Oparam elems The elements in question.
 * Oparam startPoint The starting index in the vector.
 * @return The index of the smallest element at or after that point
 *
           in the vector.
 */
int indexOfSmallest(const Vector<int>& elems, int startPoint) {
  int smallestIndex = startPoint;
  for (int i = startPoint + 1; i < elems.size(); i++) {</pre>
    if (elems[i] < elems[smallestIndex])</pre>
      smallestIndex = i;
  }
  return smallestIndex;
```

Analyzing Selection Sort

- How much work do we do for selection sort?
- To find the smallest value, we need to look at all *n* array elements.
- To find the second-smallest value, we need to look at n 1 array elements.
- To find the third-smallest value, we need to look at n 2 array elements.
- Work is n + (n 1) + (n 2) + ... + 1.

n + (n-1) + ... + 2 + 1 = n(n+1) / 2



The Complexity of Selection Sort

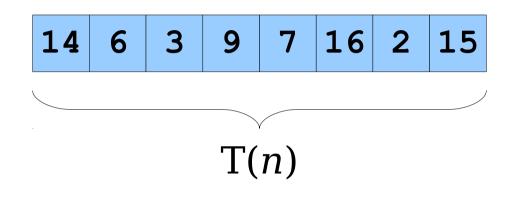
O(n (n + 1) / 2)

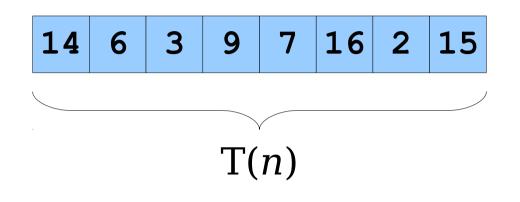
- = O(n (n + 1))
- $= \mathcal{O}(n^2 + n)$

 $= O(n^2)$

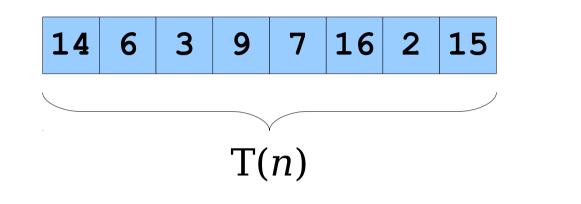
So selection sort runs in time $O(n^2)$.

14 6 3 9 7 16 2 15





14	6	3	9	7	16	2	15	5	10	8	11	1	13	12	4



 $\mathrm{T}(2n) \approx 4\mathrm{T}(n)$

Selection Sort Times

Size	Selection Sort
10000	0.304
20000	1.218
30000	2.790
40000	4.646
50000	7.395
60000	10.584
70000	14.149
80000	18.674
90000	23.165

Next Time

- Faster Sorting Algorithms
 - Can you beat $O(n^2)$ time?
- Hybrid Sorting Algorithms
 - When might selection sort be useful?