

Thinking Recursively
Part V

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

Shrinkable Words

● Let's define a shrinkable word as a word that can be
reduced down to one letter by removing one
character at a time, leaving a word at each step.

● Base Cases:
● A string that is not a word is not a shrinkable word.
● Any single-letter word is shrinkable (A, I, and O).

● Recursive Step:
● A multi-letter word is shrinkable if you can remove

a letter to form a shrinkable word.
● A multi-letter word is not shrinkable if no matter

what letter you remove, it’s not shrinkable.

Recursive Backtracking

● This code is an example of recursive
backtracking.

● At each step, we try one of many possible
options.

● If any option succeeds, that's great!
We're done.

● If none of the options succeed, then this
particular problem can't be solved.

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english); // Bad Idea ⚠ ⚠
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english); // Bad Idea ⚠ ⚠
 }
 return false;
}

Tenacity is a Virtue

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

When backtracking recursively,
don’t give up if your first try fails!

Hold out hope that something else will
work out. It very well might!

Recursive Backtracking

if (problem is sufficiently simple) {

 return whether or not the problem is solvable

} else {

 for (each choice) {

 try out that choice

 if (that choice leads to success) {

 return success;

 }

 }

 return failure;

}

Note that if the recursive call
succeeds, then we return success. If
it doesn't succeed, that doesn't mean
we've failed – it just means we need

to try out the next option.

Note that if the recursive call
succeeds, then we return success. If
it doesn't succeed, that doesn't mean
we've failed – it just means we need

to try out the next option.

Extracting a Solution

● We now have a list of words that
allegedly are shrinkable, but we don't
actually know how to shrink them!

● Can the function tell us how to shrink the
word?

Output Parameters

● An output parameter (or outparam) is a
parameter to a function that stores the
result of that function.

● Caller passes the parameter by reference,
function overwrites the value.

● Often used with recursive backtracking:
● The return value says whether a solution

exists.
● If one does, it’s loaded into the outparameter.

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT
ART
CART

A
AT
ART
CART

Question to ponder: How
would you update the

function so that it generates
the sequence in reverse

order?

Question to ponder: How
would you update the

function so that it generates
the sequence in reverse

order?

Dense Crosswords

aahs
abet
heme
stem

Generating Dense Crosswords

● Idea: Solve the problem “is there a way to extend this partial
crossword into a full one?”

● Base Case:
● If the crossword is already filled in, then we just check whether

it’s legal.
● Recursive Step:

● For each possible word that can go in the current row, try
extending the crossword with that word.

● If the remainder can be extended to a full crossword, we’re done!
● If no matter what word we put in that row, we can’t complete the

crossword, there’s no way to extend what we have.

Generating Dense Crosswords

A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A L I I

Generating Dense Crosswords

A A H E D
A B A C A

Generating Dense Crosswords

A A H E D
A B A C A
A A H E D

Generating Dense Crosswords

● Idea: Solve the problem “is there a way to extend this partial
crossword into a full one?”

● Base Case:
● If the crossword is already filled in, then we just check whether

it’s legal.
● If any column contains a string that isn’t a prefix of any English

word, report a failure without checking anything else.
● Recursive Step:

● For each possible word that can go in the current row, try
extending the crossword with that word.

● If the remainder can be extended to a full crossword, we’re done!
● If no matter what word we put in that row, we can’t complete the

crossword, there’s no way to extend what we have.

Closing Thoughts on Recursion

You now know how to use recursion to
view problems from a different

perspective that can lead to short and
elegant solutions.

You’ve seen how to use recursion to
enumerate all objects of some type,

which you can use to find the
optimal solution to a problem.

You’ve seen how to use recursive
backtracking to determine whether

something is possible and, if so to find
some way to do it.

You’ve seen that optimizing code is more
about changing strategy than writing less

code.

Next Time

● Algorithmic Analysis
● How do we formally analyze the complexity

of a piece of code?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

