
  

Thinking Recursively
Part IV



A Decision Tree
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A Decision Tree
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The Template

 void exploreFrom(current state, decisions made) {
     if (all decisions have been made) {
         output the result of the decisions we’ve made;
     } else {
         for (each decision we can make) {
             exploreFrom(result of making that decision,
                         decisions made + this decision);
         }
     }
 }

 void exploreAllTheThings(initial state) {
     exploreFrom(initial state, {});
 }

 void exploreFrom(current state, decisions made) {
     if (all decisions have been made) {
         output the result of the decisions we’ve made;
     } else {
         for (each decision we can make) {
             exploreFrom(result of making that decision,
                         decisions made + this decision);
         }
     }
 }

 void exploreAllTheThings(initial state) {
     exploreFrom(initial state, {});
 }

The PastThe PastThe PresentThe Present

The Future!The Future!



You need to pick 11 people to serve as starters on your soccer (football) team.
 

You have a good way of evaluating, roughly speaking, how any given team of 11
players will get along.

 

How do you decide which 11 players to pick?



Generating Combinations

● Suppose that we want to find every way to choose exactly one 
element from a set.

● We could do something like this:

for (int x: mySet) {

    cout << x << endl;

}



Generating Combinations

● Suppose that we want to find every way to choose exactly two 
elements from a set.

● We could do something like this:

for (int x: mySet) {

  for (int y: mySet) {

    if (x != y) {

       cout << x << ", " << y << endl;

    }

  }

}



Generating Combinations

● Suppose that we want to find every way to choose exactly three 
elements from a set.

● We could do something like this:

for (int x: mySet) {

  for (int y: mySet) {

    for (int z: mySet) {

      if (x != y && x != z && y != z) {

         cout << x << ", " << y << ", " << z << endl;

      }

    }

  }

}



Generating Combinations

● If we know how many elements we want 
in advance, we can always just nest a 
whole bunch of loops.

● But what if we don't know in advance?
● Or we do know in advance, but it’s a 

large number and we don’t want to type 
until our fingers bleed?



Generating Combinations



Generating Combinations



Generating Combinations
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Generating Combinations

One way to choose 
5 elements out of 9 is 
to exclude the first 

element, then to choose 
5 elements out of the 

remaining 8.

One way to choose 
5 elements out of 9 is 
to exclude the first 

element, then to choose 
5 elements out of the 

remaining 8.



Generating Combinations



Generating Combinations
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Generating Combinations



Generating Combinations

One way to choose
5 elements out of 9 
is to include the first 
element, then choose 

4 elements out of 
the remaining 8.

One way to choose
5 elements out of 9 
is to include the first 
element, then choose 

4 elements out of 
the remaining 8.



Judicial Decisions

Pick 4 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { Ginsburg }

Pick 5 Justices out of
{ Breyer, …, Thomas }

Chosen so far: {  }

Pick 5 Justices out of
{ Ginsburg, Breyer, …, Thomas }

Chosen so far: { }

Include Notorious RBG                                                                                        Exclude Notorious RBG



Combinations, Recursively

● Base Cases:
● If k = 0, then we’ve already picked all our elements and 

should output what we have.
● If k ≠ 0 but the remaining set of choices, there’s nothing 

we can do to get up to k elements.
● Recursive Step:

● Pick some element x from the set.
● Find all ways of picking k elements of what remains, 

excluding x from what you find.
● Find all ways of picking k – 1 elements of what remains, 

including x in what you find.



A Little Word Puzzle



“What nine-letter word can be reduced to a 
single-letter word one letter at a time by 

removing letters, leaving it a legal word at 
each step?”



The Startling Truth

S T A R T L I N G



The Startling Truth

S T A R T I N G



The Startling Truth

S T A R I N G



The Startling Truth

S T R I N G



The Startling Truth

S T I N G



The Startling Truth

S I N G



The Startling Truth

S I N



The Startling Truth

I N



The Startling Truth

I



Is there really just one nine-letter
word with this property?



All Possible Paths
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“Cart” is 
shrinkable.

“Cart” is 
shrinkable.

. because “art” is 
shrinkable .

. because “art” is 
shrinkable .

. because “at” is 
shrinkable .

. because “at” is 
shrinkable .

. because “a” is a 
single-letter word.

. because “a” is a 
single-letter word.



All Possible Paths
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All Possible Paths

CUSP
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“Up” is not 
shrinkable.

“Up” is not 
shrinkable.

. because neither 
P nor U are words.

. because neither 
P nor U are words.



All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

P C U C

US

S U

CS

C S

CU

U C

CUS

P U

CP CU

CUP

UP

“Cup” is not 
shrinkable.

“Cup” is not 
shrinkable.

. because none of 
these are shrinkable 

words.

. because none of 
these are shrinkable 

words.



All Possible Paths
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“Cusp” is not 
shrinkable.

“Cusp” is not 
shrinkable.

. because none of 
these are shrinkable 

words.

. because none of 
these are shrinkable 

words.



Shrinkable Words

● Let's define a shrinkable word as a word that can be 
reduced down to one letter by removing one 
character at a time, leaving a word at each step.

● Base Cases:
● A string that is not a word is not a shrinkable word.
● Any single-letter word is shrinkable (A, I, and O).

● Recursive Step:
● A multi-letter word is shrinkable if you can remove 

a letter to form a shrinkable word.
● A multi-letter word is not shrinkable if no matter 

what letter you remove, it’s not shrinkable.



Finding a Good Shrink
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Recursive Backtracking

● The function we have just written is an 
example of recursive backtracking.

● At each step, we try one of many possible 
options.

● If any option succeeds, that's great!  
We're done.

● If none of the options succeed, then this 
particular problem can't be solved.



bool isShrinkable(const string& word, const Lexicon& english) {
    if (!english.contains(word)) return false;
    if (word.length() == 1) return true;

    for (int i = 0; i < word.length(); i++) {
        string shrunken = word.substr(0, i) + word.substr(i + 1);
        if (isShrinkable(shrunken, english)) {
            return true;
        }
    }
    return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
    if (!english.contains(word)) return false;
    if (word.length() == 1) return true;

    for (int i = 0; i < word.length(); i++) {
        string shrunken = word.substr(0, i) + word.substr(i + 1);
        if (isShrinkable(shrunken, english)) {
            return true;
        }
    }
    return false;
}



bool isShrinkable(const string& word, const Lexicon& english) {
    if (!english.contains(word)) return false;
    if (word.length() == 1) return true;

    for (int i = 0; i < word.length(); i++) {
        string shrunken = word.substr(0, i) + word.substr(i + 1);
        if (isShrinkable(shrunken, english)) {
            return true;
        }
    }
    return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
    if (!english.contains(word)) return false;
    if (word.length() == 1) return true;

    for (int i = 0; i < word.length(); i++) {
        string shrunken = word.substr(0, i) + word.substr(i + 1);
        if (isShrinkable(shrunken, english)) {
            return true;
        }
    }
    return false;
}



bool isShrinkable(const string& word, const Lexicon& english) {
    if (!english.contains(word)) return false;
    if (word.length() == 1) return true;

    for (int i = 0; i < word.length(); i++) {
        string shrunken = word.substr(0, i) + word.substr(i + 1);
        return isShrinkable(shrunken, english); //  Bad Idea ⚠ ⚠
    }

    return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
    if (!english.contains(word)) return false;
    if (word.length() == 1) return true;

    for (int i = 0; i < word.length(); i++) {
        string shrunken = word.substr(0, i) + word.substr(i + 1);
        return isShrinkable(shrunken, english); //  Bad Idea ⚠ ⚠
    }

    return false;
}



bool isShrinkable(const string& word, const Lexicon& english) {
    if (!english.contains(word)) return false;
    if (word.length() == 1) return true;

    for (int i = 0; i < word.length(); i++) {
        string shrunken = word.substr(0, i) + word.substr(i + 1);
        return isShrinkable(shrunken, english); //  Bad Idea ⚠ ⚠
    }
    return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
    if (!english.contains(word)) return false;
    if (word.length() == 1) return true;

    for (int i = 0; i < word.length(); i++) {
        string shrunken = word.substr(0, i) + word.substr(i + 1);
        return isShrinkable(shrunken, english); //  Bad Idea ⚠ ⚠
    }
    return false;
}



Your Action Items

● Read Chapter 9 of the textbook.
● There’s tons of cool backtracking examples 

there, and it will help you prep for Friday.
● Keep working on Assignment 3.

● Aim to complete the first three parts by 
tonight if you can.

● Try to complete all four parts by Friday 
evening so you have time to clean things up 
and ask questions.



Next Time

● More Backtracking
● Techniques in searching for feasibility.

● Closing Thoughts on Recursion
● It’ll come back, but we’re going to focus on 

other things for a while!
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