

Thinking Recursively
Part IV

A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope! Yep!

Nope!

Nope!

Nope! Nope! Nope! Yep! Yep! Yep!

 Yep! Yep!Nope!

 Yep!

A Decision Tree

AHI

HI AI AH

I H I A H A

AHI AIH HAI HIA IAH IHA

A I

 H

H I A I A H

I H I A H A

The Template

 void exploreFrom(current state, decisions made) {
 if (all decisions have been made) {
 output the result of the decisions we’ve made;
 } else {
 for (each decision we can make) {
 exploreFrom(result of making that decision,
 decisions made + this decision);
 }
 }
 }

 void exploreAllTheThings(initial state) {
 exploreFrom(initial state, {});
 }

 void exploreFrom(current state, decisions made) {
 if (all decisions have been made) {
 output the result of the decisions we’ve made;
 } else {
 for (each decision we can make) {
 exploreFrom(result of making that decision,
 decisions made + this decision);
 }
 }
 }

 void exploreAllTheThings(initial state) {
 exploreFrom(initial state, {});
 }

The PastThe PastThe PresentThe Present

The Future!The Future!

You need to pick 11 people to serve as starters on your soccer (football) team.

You have a good way of evaluating, roughly speaking, how any given team of 11
players will get along.

How do you decide which 11 players to pick?

Generating Combinations

● Suppose that we want to find every way to choose exactly one
element from a set.

● We could do something like this:

for (int x: mySet) {

 cout << x << endl;

}

Generating Combinations

● Suppose that we want to find every way to choose exactly two
elements from a set.

● We could do something like this:

for (int x: mySet) {

 for (int y: mySet) {

 if (x != y) {

 cout << x << ", " << y << endl;

 }

 }

}

Generating Combinations

● Suppose that we want to find every way to choose exactly three
elements from a set.

● We could do something like this:

for (int x: mySet) {

 for (int y: mySet) {

 for (int z: mySet) {

 if (x != y && x != z && y != z) {

 cout << x << ", " << y << ", " << z << endl;

 }

 }

 }

}

Generating Combinations

● If we know how many elements we want
in advance, we can always just nest a
whole bunch of loops.

● But what if we don't know in advance?
● Or we do know in advance, but it’s a

large number and we don’t want to type
until our fingers bleed?

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

One way to choose
5 elements out of 9 is
to exclude the first

element, then to choose
5 elements out of the

remaining 8.

One way to choose
5 elements out of 9 is
to exclude the first

element, then to choose
5 elements out of the

remaining 8.

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

One way to choose
5 elements out of 9
is to include the first
element, then choose

4 elements out of
the remaining 8.

One way to choose
5 elements out of 9
is to include the first
element, then choose

4 elements out of
the remaining 8.

Judicial Decisions

Pick 4 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { Ginsburg }

Pick 5 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { }

Pick 5 Justices out of
{ Ginsburg, Breyer, …, Thomas }

Chosen so far: { }

Include Notorious RBG Exclude Notorious RBG

Combinations, Recursively

● Base Cases:
● If k = 0, then we’ve already picked all our elements and

should output what we have.
● If k ≠ 0 but the remaining set of choices, there’s nothing

we can do to get up to k elements.
● Recursive Step:

● Pick some element x from the set.
● Find all ways of picking k elements of what remains,

excluding x from what you find.
● Find all ways of picking k – 1 elements of what remains,

including x in what you find.

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

The Startling Truth

S T A R T L I N G

The Startling Truth

S T A R T I N G

The Startling Truth

S T A R I N G

The Startling Truth

S T R I N G

The Startling Truth

S T I N G

The Startling Truth

S I N G

The Startling Truth

S I N

The Startling Truth

I N

The Startling Truth

I

Is there really just one nine-letter
word with this property?

All Possible Paths

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

“Cart” is
shrinkable.

“Cart” is
shrinkable.

. because “art” is
shrinkable .

. because “art” is
shrinkable .

. because “at” is
shrinkable .

. because “at” is
shrinkable .

. because “a” is a
single-letter word.

. because “a” is a
single-letter word.

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

UP

P U

CP

P C

CU

U C

CUP

US

S U

CS

C S

CU

U C

CUS

SP

P S P U S U

USP

SP

P S

CP

P C

CS

S C

CSP

P U

CP

P C

CU

U C S U

CS

C S

CU

U C

CUS

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

CP

P C

CU

U C

CUP

US

S U

CS

C S

CU

U C

CUS

UP

P U

“Up” is not
shrinkable.

“Up” is not
shrinkable.

. because neither
P nor U are words.

. because neither
P nor U are words.

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

P C U C

US

S U

CS

C S

CU

U C

CUS

P U

CP CU

CUP

UP

“Cup” is not
shrinkable.

“Cup” is not
shrinkable.

. because none of
these are shrinkable

words.

. because none of
these are shrinkable

words.

All Possible Paths

SP

P S

UP

P U

US

S U

SP

P S

CP

P C

CS

S C P C U C

US

S U

CS

C S

CU

U CP U

CP CUUP

CUSP

USP CSP CUSCUP

“Cusp” is not
shrinkable.

“Cusp” is not
shrinkable.

. because none of
these are shrinkable

words.

. because none of
these are shrinkable

words.

Shrinkable Words

● Let's define a shrinkable word as a word that can be
reduced down to one letter by removing one
character at a time, leaving a word at each step.

● Base Cases:
● A string that is not a word is not a shrinkable word.
● Any single-letter word is shrinkable (A, I, and O).

● Recursive Step:
● A multi-letter word is shrinkable if you can remove

a letter to form a shrinkable word.
● A multi-letter word is not shrinkable if no matter

what letter you remove, it’s not shrinkable.

Finding a Good Shrink

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Recursive Backtracking

● The function we have just written is an
example of recursive backtracking.

● At each step, we try one of many possible
options.

● If any option succeeds, that's great!
We're done.

● If none of the options succeed, then this
particular problem can't be solved.

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english); // Bad Idea ⚠ ⚠
 }

 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english); // Bad Idea ⚠ ⚠
 }

 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english); // Bad Idea ⚠ ⚠
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english); // Bad Idea ⚠ ⚠
 }
 return false;
}

Your Action Items

● Read Chapter 9 of the textbook.
● There’s tons of cool backtracking examples

there, and it will help you prep for Friday.
● Keep working on Assignment 3.

● Aim to complete the first three parts by
tonight if you can.

● Try to complete all four parts by Friday
evening so you have time to clean things up
and ask questions.

Next Time

● More Backtracking
● Techniques in searching for feasibility.

● Closing Thoughts on Recursion
● It’ll come back, but we’re going to focus on

other things for a while!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

