

Thinking Recursively
Part III

Assignment 3

Assignment 3

● Assignment 3 (Recursion!) goes out today. It’s due
one week from today at the start of class.
● You are permitted to work with a partner on this

assignment. Please make sure you understand the
requirements for doing so before beginning. They’re on
the website.

● There are two optional warm-up problems. We’ll release
solutions on Wednesday.

● Anton is holding YEAH hours (Your Early
Assignment Help hours) tonight in 420-040 from
7PM – 8PM. Highly recommended!

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{{A, H, I}, {A, H}, {A, I}, {A},
{H, I}, {H}, {I}, { }}

{ { } }

{ {I}, { } }

{ {H, I}, {H}, {I}, { } }

Analyzing Our Function

● Useful fact: Given any n-element set,
there are 2n subsets of that set.

● The returned collection of sets will need
to have space for at least 2n sets.

● For a modest value of n (say, n = 50), this
will completely exceed system resources!

Reducing Memory Usage

● In many cases, we need to perform some
operation on each subset, but don't need
to actually store those subsets.

● Idea: Generate each subset, process it,
and then discard it.

● Question: How do we do this?

A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope! Yep!

Nope!

Nope!

Nope! Nope! Nope! Yep! Yep! Yep!

 Yep! Yep!Nope!

 Yep!

The Template

 void exploreFrom(current state, decisions made) {
 if (all decisions have been made) {
 output the result of the decisions we’ve made;
 } else {
 for (each decision we can make) {
 exploreFrom(result of making that decision,
 decisions made + this decision);
 }
 }
 }

 void exploreAllTheThings(initial state) {
 exploreFrom(initial state, {});
 }

 void exploreFrom(current state, decisions made) {
 if (all decisions have been made) {
 output the result of the decisions we’ve made;
 } else {
 for (each decision we can make) {
 exploreFrom(result of making that decision,
 decisions made + this decision);
 }
 }
 }

 void exploreAllTheThings(initial state) {
 exploreFrom(initial state, {});
 }

The PastThe PastThe PresentThe Present

The Future!The Future!

You own a classy
print shop.

You’ve got a list of
jobs you print.

Each job requires
some amount of
time and has a
hard deadline.

Which jobs should
you pick to

maximize your
profit?

You own a classy
print shop.

You’ve got a list of
jobs you print.

Each job requires
some amount of
time and has a
hard deadline.

Which jobs should
you pick to

maximize your
profit?

Permutations

● A permutation of a sequence is a sequence
with the same elements, though possibly in a
different order.

● For example:
● E Pluribus Unum
● E Unum Pluribus
● Pluribus E Unum
● Pluribus Unum E
● Unum E Pluribus
● Unum Pluribus E

Generating Permutations

x1 x2 x3 x4

x1 x2 x4 x3

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1 x4 x3 x2

x1 x2 x3 x4

x1 x2 x4 x3

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1 x4 x3 x2

x2

x2

x2

x2

x2

x2

x1

x1

x1

x1

x1

x1

x3 x1 x2 x4

x1 x2 x4 x3

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1 x4 x3 x2

x3

x3

x3

x3

x3

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x4 x1 x2 x3

x1 x2 x4 x3

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1 x4 x3 x2

x4

x4

x4

x4

x4

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x3

x3

x3

x3

x3

x1 x2 x3 x4

Generating Permutations

x1 x2 x3 x4

x1 x2 x4 x3

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1 x4 x3 x2

x4 x1 x2 x3

x1 x2 x4 x3

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1 x4 x3 x2

x4

x4

x4

x4

x4

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x3

x3

x3

x3

x3

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x4 x3

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1 x4 x3 x2

x2

x2

x2

x2

x2

x2

x1

x1

x1

x1

x1

x1

x3 x1 x2 x4

x1 x2 x4 x3

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1 x4 x3 x2

x3

x3

x3

x3

x3

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

A Decision Tree

AHI

HI AI AH

I H I A H A

AHI AIH HAI HIA IAH IHA

A I

 H

H I A I A H

I H I A H A

 void exploreFrom(current state, decisions made) {
 if (all decisions have been made) {
 output the result of the decisions we’ve made;
 } else {
 for (each decision we can make) {
 exploreFrom(result of making that decision,
 decisions made + this decision);
 }
 }
 }

 void exploreAllTheThings(initial state) {
 exploreFrom(initial state, {});
 }

 void exploreFrom(current state, decisions made) {
 if (all decisions have been made) {
 output the result of the decisions we’ve made;
 } else {
 for (each decision we can make) {
 exploreFrom(result of making that decision,
 decisions made + this decision);
 }
 }
 }

 void exploreAllTheThings(initial state) {
 exploreFrom(initial state, {});
 }

AHI

HI AI AH

I H I A H A

AHI AIH HAI HIA IAH IHA

A I

 H

H I A I A H

I H I A H A

Your Action Items

● Start working on Assignment 3.
● Don’t put this one off! It’s going to require

some thought.

● Stop by YEAH Hours to get some help on
how to get started on this assignemtn.

● Read Chapter 8, if you haven’t yet done so.
● Start reading Chapter 9 in preparation for

Wednesday’s lecture.

Next Time

● Generating Combinations
● How do we find the best group of people to

pick for a task?

● Recursive Backtracking
● How do we determine whether something is

feasible?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

