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Assignment 3



Assignment 3

● Assignment 3 (Recursion!) goes out today. It’s due 
one week from today at the start of class.
● You are permitted to work with a partner on this 

assignment. Please make sure you understand the 
requirements for doing so before beginning. They’re on 
the website.

● There are two optional warm-up problems. We’ll release 
solutions on Wednesday.

● Anton is holding YEAH hours (Your Early 
Assignment Help hours) tonight in 420-040 from 
7PM – 8PM. Highly recommended!



Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{{A, H, I}, {A, H}, {A, I}, {A},
{H, I}, {H}, {I}, { }}

{ { } }

{ {I}, { } }

{ {H, I}, {H}, {I}, { } }



Analyzing Our Function

● Useful fact: Given any n-element set, 
there are 2n subsets of that set.

● The returned collection of sets will need 
to have space for at least 2n sets.

● For a modest value of n (say, n = 50), this 
will completely exceed system resources!



Reducing Memory Usage

● In many cases, we need to perform some 
operation on each subset, but don't need 
to actually store those subsets.

● Idea: Generate each subset, process it, 
and then discard it.

● Question: How do we do this?



A Decision Tree
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The Template

 void exploreFrom(current state, decisions made) {
     if (all decisions have been made) {
         output the result of the decisions we’ve made;
     } else {
         for (each decision we can make) {
             exploreFrom(result of making that decision,
                         decisions made + this decision);
         }
     }
 }

 void exploreAllTheThings(initial state) {
     exploreFrom(initial state, {});
 }

 void exploreFrom(current state, decisions made) {
     if (all decisions have been made) {
         output the result of the decisions we’ve made;
     } else {
         for (each decision we can make) {
             exploreFrom(result of making that decision,
                         decisions made + this decision);
         }
     }
 }

 void exploreAllTheThings(initial state) {
     exploreFrom(initial state, {});
 }

The PastThe PastThe PresentThe Present

The Future!The Future!



You own a classy 
print shop.

 

You’ve got a list of 
jobs you print.

 

Each job requires 
some amount of 
time and has a 
hard deadline.

 

Which jobs should 
you pick to 

maximize your 
profit?
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Permutations

● A permutation of a sequence is a sequence 
with the same elements, though possibly in a 
different order.

● For example:
● E Pluribus Unum
● E Unum Pluribus
● Pluribus E Unum
● Pluribus Unum E
● Unum E Pluribus
● Unum Pluribus E



Generating Permutations
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A Decision Tree
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 void exploreFrom(current state, decisions made) {
     if (all decisions have been made) {
         output the result of the decisions we’ve made;
     } else {
         for (each decision we can make) {
             exploreFrom(result of making that decision,
                         decisions made + this decision);
         }
     }
 }

 void exploreAllTheThings(initial state) {
     exploreFrom(initial state, {});
 }

 void exploreFrom(current state, decisions made) {
     if (all decisions have been made) {
         output the result of the decisions we’ve made;
     } else {
         for (each decision we can make) {
             exploreFrom(result of making that decision,
                         decisions made + this decision);
         }
     }
 }

 void exploreAllTheThings(initial state) {
     exploreFrom(initial state, {});
 }
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Your Action Items

● Start working on Assignment 3.
● Don’t put this one off! It’s going to require 

some thought.

● Stop by YEAH Hours to get some help on 
how to get started on this assignemtn.

● Read Chapter 8, if you haven’t yet done so.
● Start reading Chapter 9 in preparation for 

Wednesday’s lecture.



Next Time

● Generating Combinations
● How do we find the best group of people to 

pick for a task?

● Recursive Backtracking
● How do we determine whether something is 

feasible?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

