# Thinking Recursively Part III

Assignment 3

## Assignment 3

- Assignment 3 (*Recursion!*) goes out today. It's due one week from today at the start of class.
  - You are permitted to work with a partner on this assignment. Please make sure you understand the requirements for doing so before beginning. They're on the website.
  - There are two optional warm-up problems. We'll release solutions on Wednesday.
- Anton is holding YEAH hours (Your Early Assignment Help hours) tonight in 420-040 from 7PM – 8PM. Highly recommended!

## Tracing the Recursion

```
{ A, H, I } {{A, H, I}, {A, H}, {A, I}, {A}, 
{H, I}, {H}, {I}, {}
  { H, I }
                    { {H, I}, {H}, {I}, { } }
    { I }
                            { {I}, { } }
     { }
                               { { } }
```

# Analyzing Our Function

- *Useful fact*: Given any *n*-element set, there are 2<sup>n</sup> subsets of that set.
- The returned collection of sets will need to have space for at least 2<sup>n</sup> sets.
- For a modest value of n (say, n = 50), this will completely exceed system resources!

# Reducing Memory Usage

- In many cases, we need to perform some operation on each subset, but don't need to actually store those subsets.
- *Idea*: Generate each subset, process it, and then discard it.
- Question: How do we do this?

#### A Decision Tree



## The Template

The Present The Past void exploreFrom(current state, decisions made) { if (all decisions have been made) { output the result of the decisions we've made; } else { for (each decision we can make) { exploreFrom(result of making that decision, decisions made + this decision); The Future! void exploreAllTheThings(initial state) { exploreFrom(initial state, {});



#### Permutations

• A *permutation* of a sequence is a sequence with the same elements, though possibly in a

different order.

• For example:

- E Pluribus Unum
- E Unum Pluribus
- Pluribus E Unum
- Pluribus Unum E
- Unum E Pluribus
- Unum Pluribus E



## Generating Permutations

$$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4$$

| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ | $X_4$          |
|----------------|----------------|----------------|----------------|
| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $X_4$          | $X_3$          |
| $\mathbf{X}_1$ | $\mathbf{X}_3$ | $\mathbf{X}_2$ | $X_4$          |
| $\mathbf{X}_1$ | $\mathbf{X}_3$ | $X_4$          | $\mathbf{X}_2$ |
| $\mathbf{X}_1$ | $X_4$          | $\mathbf{X}_2$ | $X_3$          |
| $\mathbf{X}_1$ | $X_4$          | $\mathbf{X}_3$ | $X_2$          |

| $\mathbf{X}_2$ | $\mathbf{X}_1$ | $\mathbf{X}_3$ | $X_4$ |
|----------------|----------------|----------------|-------|
| $\mathbf{X}_2$ | $\mathbf{X}_1$ | $X_4$          | $X_3$ |
| $\mathbf{X}_2$ | $X_3$          | $X_1$          | $X_4$ |
| $\mathbf{X}_2$ | $X_3$          | $X_4$          | $X_1$ |
| $\mathbf{X}_2$ | $X_4$          | $\mathbf{X}_1$ | $X_3$ |
| $\mathbf{X}_2$ | $X_4$          | $X_3$          | $X_1$ |

| $X_3$          | $\mathbf{X}_1$ | $\mathbf{X}_2$ | $X_4$            |
|----------------|----------------|----------------|------------------|
|                |                | $X_4$          |                  |
| $\mathbf{X}_3$ | $\mathbf{X}_2$ | $\mathbf{X}_1$ | $X_4$            |
|                |                | $X_4$          |                  |
|                |                |                | $\mathbf{X}_2$   |
| $\mathbf{X}_3$ |                | $\mathbf{X}_2$ | $ \mathbf{X}_1 $ |

| $X_4$ | $\mathbf{X}_1$ | $\mathbf{X}_2$ | $X_3$          |
|-------|----------------|----------------|----------------|
| $X_4$ | $\mathbf{X}_1$ | $\mathbf{X}_3$ | $\mathbf{X}_2$ |
| $X_4$ | $\mathbf{X}_2$ | $\mathbf{X}_1$ | $X_3$          |
| $X_4$ | $\mathbf{X}_2$ | $X_3$          | $\mathbf{X}_1$ |
| $X_4$ | $X_3$          | $X_1$          | $\mathbf{X}_2$ |
| $X_4$ | $X_3$          | $\mathbf{X}_2$ | $\mathbf{X}_1$ |

## Generating Permutations

$$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4$$

| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ | $X_4$          |
|----------------|----------------|----------------|----------------|
| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_4$ | $\mathbf{X}_3$ |
| $\mathbf{X}_1$ | $\mathbf{X}_3$ | $\mathbf{X}_2$ | $X_4$          |
| $\mathbf{X}_1$ | $\mathbf{X}_3$ | $\mathbf{X}_4$ | $\mathbf{X}_2$ |
| $\mathbf{X}_1$ | $\mathbf{X}_4$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ |
| $\mathbf{X}_1$ | $\mathbf{X}_4$ | $\mathbf{X}_3$ | $\mathbf{X}_2$ |

| $\mathbf{X}_2$ | $\mathbf{X}_1$ | $\mathbf{X}_3$ | $\mathbf{x}_4$ |
|----------------|----------------|----------------|----------------|
| $\mathbf{X}_2$ | $\mathbf{x}_1$ | $\mathbf{X}_4$ | $\mathbf{X}_3$ |
| $\mathbf{X}_2$ | $\mathbf{X}_3$ | $\mathbf{X}_1$ | $\mathbf{X}_4$ |
| $\mathbf{X}_2$ | $\mathbf{X}_3$ | $\mathbf{X}_4$ | $\mathbf{x}_1$ |
| $\mathbf{X}_2$ | $\mathbf{X}_4$ | $\mathbf{X}_1$ | $\mathbf{X}_3$ |
| $\mathbf{X}_2$ | $\mathbf{X}_4$ | $\mathbf{X}_3$ | $\mathbf{X}_1$ |

| $X_3$          | $X_1$          | $\mathbf{X}_2$ | $X_4$          |
|----------------|----------------|----------------|----------------|
| $X_3$          | $X_1$          | $X_4$          | $\mathbf{X}_2$ |
| $\mathbf{X}_3$ | $\mathbf{X}_2$ | $X_1$          | $X_4$          |
| $X_3$          | $X_2$          | $X_4$          | $X_1$          |
| $X_3$          | $X_4$          | $\mathbf{X}_1$ | $\mathbf{X}_2$ |
| $X_3$          | $X_4$          | $\mathbf{X}_2$ | $X_1$          |

| $\mathbf{X}_4$ | $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ |
|----------------|----------------|----------------|----------------|
| $\mathbf{X}_4$ | $\mathbf{X}_1$ | $\mathbf{X}_3$ | $\mathbf{X}_2$ |
| $\mathbf{X}_4$ | $\mathbf{X}_2$ | $\mathbf{X}_1$ | $\mathbf{X}_3$ |
| $\mathbf{X}_4$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ | $\mathbf{X}_1$ |
| $\mathbf{X}_4$ | $\mathbf{X}_3$ | $\mathbf{X}_1$ | $\mathbf{X}_2$ |
| $\mathbf{X}_4$ | $\mathbf{X}_3$ | $\mathbf{X}_2$ | $\mathbf{X}_1$ |

## A Decision Tree





#### Your Action Items

- Start working on Assignment 3.
  - **Don't put this one off!** It's going to require some thought.
- Stop by YEAH Hours to get some help on how to get started on this assignemtn.
- Read Chapter 8, if you haven't yet done so.
- Start reading Chapter 9 in preparation for Wednesday's lecture.

### Next Time

#### Generating Combinations

 How do we find the best group of people to pick for a task?

#### Recursive Backtracking

 How do we determine whether something is feasible?