Thinking Recursively Part III

Assignment 3

Assignment 3

- Assignment 3 (Recursion!) goes out today. It's due one week from today at the start of class.
- You are permitted to work with a partner on this assignment. Please make sure you understand the requirements for doing so before beginning. They're on the website.
- There are two optional warm-up problems. We'll release solutions on Wednesday.
- Anton is holding YEAH hours (Your Early Assignment Help hours) tonight in 420-040 from 7PM - 8PM. Highly recommended!

Tracing the Recursion

Tracing the Recursion

\{ A, H, I \}

Tracing the Recursion

\{ A, H, I \}

\{ H, I \}

Tracing the Recursion

\{ A, H, I \}

$$
\{\mathrm{H}, \mathrm{I}\}
$$

$$
\{I \text { \} }
$$

Tracing the Recursion

\{ A, H, I \}

$$
\{\mathrm{H}, \mathrm{I}\}
$$

$$
\{I\}
$$

$$
\}
$$

Tracing the Recursion

\{ A, H, I \}

$$
\{\mathrm{H}, \mathrm{I}\}
$$

$$
\{I\}
$$

$$
\}
$$

$$
\{\}\}
$$

Tracing the Recursion

\{ A, H, I \}

$$
\{\mathrm{H}, \mathrm{I}\}
$$

$$
\{I\}
$$

$$
\{\{I\},\{ \}\}
$$

$$
\}
$$

$$
\{\}\}
$$

Tracing the Recursion

\{ A, H, I \}

$$
\{\mathrm{H}, \mathrm{I}\}\{\{\{\mathrm{H}, \mathrm{I}\},\{\mathrm{H}\},\{\mathrm{I}\},\{ \}\}
$$

$$
\{I\}
$$

$$
\{\{I\},\{ \}\}
$$

$$
\}
$$

$$
\{\}\}
$$

Tracing the Recursion

$\{A, H, I\}\{\{A, H, I\},\{A, H\},\{A, I\},\{A\}$,

 $\{H, I\},\{H\},\{I\},\{ \}\}$$\{\mathrm{H}, \mathrm{I}\}\{\{\mathrm{f}, \mathrm{I}\},\{\mathrm{H}\},\{\mathrm{I}\},\{ \}\}$

\{ I \}

$$
\{\{I\},\{ \}\}
$$

$$
\}
$$

\{ \{ \} \}

Analyzing Our Function

- Useful fact: Given any n-element set, there are 2^{n} subsets of that set.
- The returned collection of sets will need to have space for at least 2^{n} sets.
- For a modest value of n (say, $n=50$), this will completely exceed system resources!

Reducing Memory Usage

- In many cases, we need to perform some operation on each subset, but don't need to actually store those subsets.
- Idea: Generate each subset, process it, and then discard it.
- Question: How do we do this?

A Decision Tree

A Decision Tree

A?

A Decision Tree

A?

A Decision Tree

A Decision Tree

A?

A Decision Tree

A Decision Tree

A?

A Decision Tree

A?

Yep!

Nope!
Yep!

H?

Nope! Yep! Nope! Yep! Nope! Yep! Nope! Yep!
\{I\}
\{H\}
\{H, I \}
\{A\}
$\{\mathrm{A}, \mathrm{I}\}\{\mathrm{A}, \mathrm{H}\}\{\mathrm{A}, \mathrm{H}, \mathrm{I}\}$

A Decision Tree

A?

A Decision Tree

A Decision Tree

A?

A Decision Tree

A Decision Tree

A?

The Template

The Present

The Past

void exploreFrom(current state, decisions made) \{ if (all decisions have been made) \{ output the result of the decisions we've made; \} else \{
for (each decision we can make) \{ exploreFrom(result of making that decision, decisions made + this decision);
\}
\}

The Future!

void exploreAllTheThings(initial state) \{ exploreFrom(initial state, \{\});

Permutations

- A permutation of a sequence is a sequence with the same elements, though possibly in a different order.

Permutations

- A permutation of a sequence is a sequence with the same elements, though possibly in a different order.

Permutations

- A permutation of a sequence is a sequence with the same elements, though possibly in a different order.
- For example:
- E Pluribus Unum
- E Unum Pluribus
- Pluribus E Unum
- Pluribus Unum E
- Unum E Pluribus
- Unum Pluribus E

Generating Permutations

$$
\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

| x_{4} | x_{1} | x_{2} | x_{3} |
| :--- | :--- | :--- | :--- | :--- |
| x_{4} | x_{1} | x_{3} | x_{2} |
| x_{4} | x_{2} | x_{1} | x_{3} |
| x_{4} | x_{2} | x_{3} | x_{1} |
| x_{4} | x_{3} | x_{1} | x_{2} |
| X_{4} | x_{3} | x_{2} | x_{1} |

Generating Permutations

$$
\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

X_{1}	X_{2}	X_{3}	X_{4}
X_{1}	X_{2}	X_{4}	X_{3}
X_{1}	X_{3}	X_{2}	X_{4}
X_{1}	X_{3}	X_{4}	X_{2}
X_{1}	X_{4}	X_{2}	X_{3}
X_{1}	X_{4}	X_{3}	X_{2}

Generating Permutations

$$
\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

$$
\begin{array}{l|l|l}
\mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} \\
\mathrm{X}_{4} \\
\hline \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{4} \\
\mathrm{X}_{3} \\
\hline \mathrm{X}_{1} & \mathrm{X}_{3} & \mathrm{X}_{2} \\
\hline \mathrm{X}_{4} \\
\mathrm{X}_{1} & \mathrm{X}_{3} & \mathrm{X}_{4} \\
\mathrm{X}_{2} \\
\mathrm{X}_{1} & \mathrm{X}_{4} & \mathrm{X}_{2} \\
\hline \mathrm{X}_{3} \\
\hline \mathrm{X}_{1} & \mathrm{X}_{4} & \mathrm{X}_{3} \\
\hline & \mathrm{X}_{2} \\
\hline
\end{array}
$$

Generating Permutations

$$
\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

X_{2}	X_{1}	X	
X_{2}	X	X_{4}	
X_{2}	X_{3}	X	
X_{2}	X_{3}	X	
X_{2}	X_{4}	X	
X	X_{4}	X	

Generating Permutations

$$
\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

X	X_{1}	X	
X_{2}	X	X_{4}	
X_{2}	X_{3}	X_{1}	
X_{2}	X_{3}	X	
X_{2}	X_{4}	X	
X_{2}	X_{4}	X	

Generating Permutations

$$
\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

X_{3}	X_{1}	X_{2}	
3	X	X_{4}	
X_{3}	X_{2}	X_{1}	
X_{3}	X	X_{4}	
X_{3}	X_{4}	X	
	X	X	

Generating Permutations

$$
\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

X_{3}	X_{1}	X_{2}	
3	X	X_{4}	
3	X_{2}	X_{1}	
X_{3}	X	X_{4}	
X_{3}	X	X_{1}	
	X_{4}	X	

Generating Permutations

$$
\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

$\mathrm{x}_{4} \mathrm{x}_{1} \mathrm{x}_{2}$
x_{4}
x_{4}
x_{1} $\mathrm{x}_{3} \mathrm{x}_{2}$

Generating Permutations

$$
\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{X}_{3} \mathrm{X}_{4}
$$

X_{4}	$\mathrm{X}_{1} \mathrm{X}$	X_{2}
X_{4}	X	X_{3}
X_{4}	X_{2}	X_{1}
X_{4}	$\mathrm{X}_{2} \mathrm{X}$	X_{3}
X_{4}	X_{3}	
X_{4}	X_{3}	X

A Decision Tree


```
void exploreFrom(current state, decisions made) {
    if (all decisions have been made) {
        output the result of the decisions we've made;
    } else {
        for (each decision we can make) {
        exploreFrom(result of making that decision,
                        decisions made + this decision);
        }
    }
}
void exploreAllTheThings(initial state) {
    exploreFrom(initial state, {});
}
```


Your Action Items

- Start working on Assignment 3.
- Don't put this one off! It's going to require some thought.
- Stop by YEAH Hours to get some help on how to get started on this assignemtn.
- Read Chapter 8, if you haven't yet done so.
- Start reading Chapter 9 in preparation for Wednesday’s lecture.

Next Time

- Generating Combinations
- How do we find the best group of people to pick for a task?
- Recursive Backtracking
- How do we determine whether something is feasible?

