
  

Thinking Recursively
Part II



Recursive Problem-Solving

if (problem is sufficiently simple) {

    Directly solve the problem.

    Return the solution.

 } else {

    Split the problem up into one or more smaller
        problems with the same structure as the original.

    Solve each of those smaller problems.

    Combine the results to get the overall solution.

    Return the overall solution.

}
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and Initial Angle? Most unorthodox!
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This is more acceptable
in polite company!



Wrapper Functions

● Some recursive functions need extra arguments 
as part of an implementation detail.
● In our case, the order of the tree is not something we 

want to expose.

● A wrapper function is a function that does some 
initial prep work, then fires off a recursive call 
with the right arguments.

● We’ll use wrapper functions extensively over the 
next couple of lectures, and they’ll (hypothetically 
speaking) be something useful to know. ☺



The beautiful thing is that the distribution 
of the sizes of individual trees in the forest 
appears to exactly match the distribution of 
the sizes of individual branches within a 
single tree [...]

[S]tudying a single tree will make it easier 
to predict how much carbon dioxide an en- 
tire forest can absorb.

- Hunting the Hidden Dimension

http://www.pbs.org/wgbh/nova/physics/hunting-hidden-dimension.html


An Amazing Website

http://recursivedrawing.com/

http://recursivedrawing.com/
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Recursive Enumeration

● Recursion is a powerful tool for enumeration: 
listing off all the possible ways something can 
be done.

● As you get more and more comfortable with 
recursive enumeration, you’ll find yourself able 
to solve a larger and larger class of problems.

● You’ll see a lot of examples of this over the 
next few lectures, section handouts, and 
programming assignments.











Subsets and Power Sets

● Mathematically, we are looking to choose 
a subset of the group of physicians.

● A subset of a group S is a collection of 
zero or more objects chosen out of S.

● Sets have tons of crazy and 
counterintuitive properties – take CS103 
for details!

● In the meantime, how might we go about 
listing off all the subsets of our group?
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What’s the smallest set we can make?

Answer: The empty set of no elements!



Generating Subsets

● Base Case:
● The only subset of the empty set is the empty 

set itself.

● Recursive Step:
● Fix some element x of the set.
● Generate all subsets of the set formed by 

removing x from the main set.
● These subsets are subsets of the original set.
● All of the sets formed by adding x into those 

subsets are subsets of the original set.
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Your Action Items

● Complete Assignment 2
● It’s due on Monday. If you haven’t started it 

yet, you are behind where you need to be 
right now!

● Read Chapter 8 of the Textbook
● There’s a ton of goodies in there! It’ll help 

you solidify your understanding.



Next Time

● Exhaustive Recursion II
● What other structures can we generate?
● How do we do so efficiently?

● Recursive Backtracking
● How do you find a needle in a haystack?
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