

Thinking Recursively
Part II

Recursive Problem-Solving

if (problem is sufficiently simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem up into one or more smaller
 problems with the same structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall solution.

 Return the overall solution.

}

A fractal is an object that contains a smaller copy of itself.

A fractal is an object that contains a smaller copy of itself.

A fractal is an object that contains a smaller copy of itself.

Assignment 3:

Generate This

Fractal!

Assignment 3:

Generate This

Fractal!

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different orientation.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different orientation.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different orientation.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different orientation.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-0 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-1 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-2 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-3 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-4 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-11 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-3 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

Recursive fractals are often
described in terms of some

parameter called the order of
the fractal.

An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

We can draw lines in the window
by calling

window.drawPolarLine(x, y, r, θ);

with θ specified in degrees.

We can draw lines in the window
by calling

window.drawPolarLine(x, y, r, θ);

with θ specified in degrees.

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

I certainly must tell you where
the tree goes and how big it is!

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight,
 90, 8);

 return 0;
 }

Tell you parameters like the Order
and Initial Angle? Most unorthodox!

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight);

 return 0;
 }

 int main() {
 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window, treeRootX, treeRootY, treeHeight);

 return 0;
 }

This is more acceptable
in polite company!

Wrapper Functions

● Some recursive functions need extra arguments
as part of an implementation detail.
● In our case, the order of the tree is not something we

want to expose.

● A wrapper function is a function that does some
initial prep work, then fires off a recursive call
with the right arguments.

● We’ll use wrapper functions extensively over the
next couple of lectures, and they’ll (hypothetically
speaking) be something useful to know. ☺

The beautiful thing is that the distribution
of the sizes of individual trees in the forest
appears to exactly match the distribution of
the sizes of individual branches within a
single tree [...]

[S]tudying a single tree will make it easier
to predict how much carbon dioxide an en-
tire forest can absorb.

- Hunting the Hidden Dimension

http://www.pbs.org/wgbh/nova/physics/hunting-hidden-dimension.html

An Amazing Website

http://recursivedrawing.com/

http://recursivedrawing.com/

Recursive Enumeration

You need to send an emergency
team of doctors to an area.

Each doctor has different skills
(primary care, surgery, infectious
disease, etc.). Many have several
skills.

How do you find the smallest
team you can send in that has all
the essential skills covered?

You need to send an emergency
team of doctors to an area.

Each doctor has different skills
(primary care, surgery, infectious
disease, etc.). Many have several
skills.

How do you find the smallest
team you can send in that has all
the essential skills covered?

 1. List off every possible team of doctors
you could form.

 2. Pare the list down to just the teams
that have all the skills you need.

 3. Choose the smallest of these teams.

 1. List off every possible team of doctors
you could form.

 2. Pare the list down to just the teams
that have all the skills you need.

 3. Choose the smallest of these teams.

1. List off every possible team of doctors
you could form.

2. Pare the list down to just the teams that
have all the skills you need.

3. Choose the smallest of these teams.

1. List off every possible team of doctors
you could form.

2. Pare the list down to just the teams that
have all the skills you need.

3. Choose the smallest of these teams.

Recursive Enumeration

● Recursion is a powerful tool for enumeration:
listing off all the possible ways something can
be done.

● As you get more and more comfortable with
recursive enumeration, you’ll find yourself able
to solve a larger and larger class of problems.

● You’ll see a lot of examples of this over the
next few lectures, section handouts, and
programming assignments.

Subsets and Power Sets

● Mathematically, we are looking to choose
a subset of the group of physicians.

● A subset of a group S is a collection of
zero or more objects chosen out of S.

● Sets have tons of crazy and
counterintuitive properties – take CS103
for details!

● In the meantime, how might we go about
listing off all the subsets of our group?

{ A, H, I }

{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }

{ A, H, I }

{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }

{ A, H, I }

{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }

{ A, H, I }

To generate all subsets of {A, H, I}:

Generate all subsets of {H, I}.

For each of those subsets:
Make two copies.
Leave one copy unmodified.
Add A into the other.

Return what you find.

To generate all subsets of {A, H, I}:

Generate all subsets of {H, I}.

For each of those subsets:
Make two copies.
Leave one copy unmodified.
Add A into the other.

Return what you find.

{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }
{ A, H, I }

{ A, H, I }

To generate all subsets of {A, H, I}:

Generate all subsets of {H, I}.

For each of those subsets:
Make two copies.
Leave one copy unmodified.
Add A into the other.

Return what you find.

To generate all subsets of {A, H, I}:

Generate all subsets of {H, I}.

For each of those subsets:
Make two copies.
Leave one copy unmodified.
Add A into the other.

Return what you find.

What’s the smallest set we can make?

Answer: The empty set of no elements!

Generating Subsets

● Base Case:
● The only subset of the empty set is the empty

set itself.

● Recursive Step:
● Fix some element x of the set.
● Generate all subsets of the set formed by

removing x from the main set.
● These subsets are subsets of the original set.
● All of the sets formed by adding x into those

subsets are subsets of the original set.

Tracing the Recursion

Tracing the Recursion

{ A, H, I }

Tracing the Recursion

{ A, H, I }

{ H, I }

Tracing the Recursion

{ A, H, I }

{ H, I }

{ I }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ { } }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ { } }

{ {I}, { } }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ { } }

{ {I}, { } }

{ {H, I}, {H}, {I}, { } }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ {A, H, I}, {A, H}, {A, I}, {A}
{H, I}, {H}, {I}, { } }

{ { } }

{ {I}, { } }

{ {H, I}, {H}, {I}, { } }

Your Action Items

● Complete Assignment 2
● It’s due on Monday. If you haven’t started it

yet, you are behind where you need to be
right now!

● Read Chapter 8 of the Textbook
● There’s a ton of goodies in there! It’ll help

you solidify your understanding.

Next Time

● Exhaustive Recursion II
● What other structures can we generate?
● How do we do so efficiently?

● Recursive Backtracking
● How do you find a needle in a haystack?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

