

Thinking Recursively

GTGTC Info Session

● "Are you passionate about computer science, education
or both? Do you want to encourage young women
interested in learning coding skills?

● Come to the Girls Teaching Girls to Code Info
Session! We're going to be discussing our organization,
what we do, and how you can get involved.

● We welcome all levels of experience. Learn about Code
Camp, our biggest event, as well as other opportunities
throughout the year.

● Hope to see you there!

Women's Community Center (Fire Truck House)
Wednesday, January 25 7-8 PM

Recursive Problem-Solving

if (problem is sufficiently simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem up into one or more smaller
 problems with the same structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall solution.

 Return the overall solution.

}

int digitalRootOf(int value);
int sumOfDigitsOf(int value);

int sumOfDigitsOf(int value) {
if (value < 10) {

return value;
} else {

return sumOfDigitsOf(value / 10) + (value % 10);
}

}

int digitalRootOf(int value) {
if (value < 10) {

return value;
} else {

return digitalRootOf(sumOfDigitsOf(value));
}

}

string reverseOf(const string& text) {
 if (text == "") {
 return "";
 } else {
 return reverseOf(text.substr(1)) + text[0];
 }
}

int bestCoverageFor(const Vector<int>& populations) {
if (populations.size() == 0) {

return 0;
} else if (populations.size() == 1) {

return populations[0];
} else {

Vector<int> allButFirst = tailOf(populations);
Vector<int> allButFirstTwo = tailOf(allButFirst);

int withFirst = populations[0] +
 bestCoverageFor(allButFirstTwo);
int withoutFirst = bestCoverageFor(allButFirst);

return max(withFirst, withoutFirst);
}

}

What's Going On?

● Recursion solves a problem by
continuously simplifying the problem until
it becomes simple enough to be solved
directly.

● The recursive step makes the problem
slightly simpler.

● The base case is what ultimately makes
the problem solvable – it guarantees that
when the problem is sufficiently simple,
we can just solve it directly.

Recursive Problem-Solving

if (problem is sufficiently simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem up into one or more smaller
 problems with the same structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall solution.

 Return the overall solution.

}

The Towers of Hanoi Problem

Towers of Hanoi

A B C

Move this tower.

Move this tower.

.to this spindle.

.to this spindle.

Towers of Hanoi

A B C

Solving the Towers of Hanoi
A B C

Thanks to Grant Sanderson for the animation idea.

https://www.youtube.com/watch?v=2SUvWfNJSsM

Solving the Towers of Hanoi
A B C

 Step One: Move the four smaller disks from Spindle A to Spindle B.
 Step Two: Move the blue disk from Spindle A to Spindle C.
 Step Three: Move the four smaller disks from Spindle B to Spindle C.

 Step One: Move the four smaller disks from Spindle A to Spindle B.
 Step Two: Move the blue disk from Spindle A to Spindle C.
 Step Three: Move the four smaller disks from Spindle B to Spindle C.

Solving the Towers of Hanoi
A B C

 Step One: Move the four smaller disks from Spindle A to Spindle B.
 Step Two: Move the blue disk from Spindle A to Spindle C.
 Step Three: Move the four smaller disks from Spindle B to Spindle C.

 Step One: Move the four smaller disks from Spindle A to Spindle B.
 Step Two: Move the blue disk from Spindle A to Spindle C.
 Step Three: Move the four smaller disks from Spindle B to Spindle C.

Solving the Towers of Hanoi
A B C

 Step One: Move the four smaller disks from Spindle A to Spindle B.
 Step Two: Move the blue disk from Spindle A to Spindle C.
 Step Three: Move the four smaller disks from Spindle B to Spindle C.

 Step One: Move the four smaller disks from Spindle A to Spindle B.
 Step Two: Move the blue disk from Spindle A to Spindle C.
 Step Three: Move the four smaller disks from Spindle B to Spindle C.

Solving the Towers of Hanoi
A B C

Solving the Towers of Hanoi
A B C

 Only Step: Move the smallest disk from Spindle A to Spindle C. Only Step: Move the smallest disk from Spindle A to Spindle C.

To move the 5-disk tower from Spindle A to Spindle C:
 Step One: Move the four smaller disks from Spindle A to Spindle B.
 Step Two: Move the blue disk from Spindle A to Spindle C.
 Step Three: Move the four smaller disks from Spindle B to Spindle C.

To move the 5-disk tower from Spindle A to Spindle C:
 Step One: Move the four smaller disks from Spindle A to Spindle B.
 Step Two: Move the blue disk from Spindle A to Spindle C.
 Step Three: Move the four smaller disks from Spindle B to Spindle C.

To move the 4-disk tower from Spindle A to Spindle B:
 Step One: Move the three smaller disks from Spindle A to Spindle C.
 Step Two: Move the green disk from Spindle A to Spindle B.
 Step Three: Move the three smaller disks from Spindle C to Spindle B.

To move the 4-disk tower from Spindle A to Spindle B:
 Step One: Move the three smaller disks from Spindle A to Spindle C.
 Step Two: Move the green disk from Spindle A to Spindle B.
 Step Three: Move the three smaller disks from Spindle C to Spindle B.

To move the 3-disk tower from Spindle A to Spindle C:
 Step One: Move the two smaller disks from Spindle A to Spindle B.
 Step Two: Move the yellow disk from Spindle A to Spindle C.
 Step Three: Move the two smaller disks from Spindle B to Spindle C.

To move the 3-disk tower from Spindle A to Spindle C:
 Step One: Move the two smaller disks from Spindle A to Spindle B.
 Step Two: Move the yellow disk from Spindle A to Spindle C.
 Step Three: Move the two smaller disks from Spindle B to Spindle C.

To move the 2-disk tower from Spindle A to Spindle B:
 Step One: Move the smallest disk from Spindle A to Spindle C.
 Step Two: Move the orange disk from Spindle A to Spindle B.
 Step Three: Move the smallest disk from Spindle C to Spindle B.

To move the 2-disk tower from Spindle A to Spindle B:
 Step One: Move the smallest disk from Spindle A to Spindle C.
 Step Two: Move the orange disk from Spindle A to Spindle B.
 Step Three: Move the smallest disk from Spindle C to Spindle B.

To move the 1-disk tower from Spindle A to Spindle C:
 Only Step: Move the smallest disk from Spindle A to Spindle C.

To move the 1-disk tower from Spindle A to Spindle C:
 Only Step: Move the smallest disk from Spindle A to Spindle C.

To move an n-disk tower from Spindle A to Spindle C:
 Step One: Move the (n-1) smaller disks from Spindle A to Spindle B.
 Step Two: Move the nth disk from Spindle A to Spindle C.
 Step Three: Move the (n-1) smaller disks from Spindle B to Spindle C.

To move an n-disk tower from Spindle A to Spindle C:
 Step One: Move the (n-1) smaller disks from Spindle A to Spindle B.
 Step Two: Move the nth disk from Spindle A to Spindle C.
 Step Three: Move the (n-1) smaller disks from Spindle B to Spindle C.

To move the 1-disk tower from Spindle A to Spindle C:
 Only Step: Move the smallest disk from Spindle A to Spindle C.

To move the 1-disk tower from Spindle A to Spindle C:
 Only Step: Move the smallest disk from Spindle A to Spindle C.

void moveTower(int n, char from, char to, char temp) {
 if (n == 1) {
 moveSingleDisk(from, to);
 } else {
 moveTower(n – 1, from, temp, to);
 moveSingleDisk(from, to);
 moveTower(n – 1, temp, to, from);
 }
}

Emergent Behavior

● Even though each function call does very
little work, the overall behavior of the
function is to solve the Towers of Hanoi.

● It's often tricky to think recursively
because of this emergent behavior:
● No one function call solves the entire

problem.
● Each function does only a small amount of

work on its own and delegates the rest.

Writing Recursive Functions

● Although it is good to be able to trace through a set of
recursive calls to understand how they work, you will
need to build up an intuition for recursion to use it
effectively.

● You will need to learn to trust that your recursive calls
– which are to the function that you are currently
writing! – will indeed work correctly.
● Eric Roberts calls this the “Recursive Leap of Faith.”

● Everyone can learn to think recursively. If this
seems confusing now, don't panic! You'll start
picking this up as we continue forward.

void moveTower(int n, char from, char to, char temp) {
 if (n == 1) {
 moveSingleDisk(from, to);
 } else {
 moveTower(n – 1, from, temp, to);
 moveSingleDisk(from, to);
 moveTower(n – 1, temp, to, from);
 }
}

void moveTower(int n, char from, char to, char temp) {
 if (n > 0) {
 moveTower(n – 1, from, temp, to);
 moveSingleDisk(from, to);
 moveTower(n – 1, temp, to, from);
 }
}

Picking a Base Case

● When choosing base cases, you should always
try to pick the absolute smallest case possible.

● The simplest case is often so simple that it
appears silly.
● Solve Towers of Hanoi with no disks.
● Add up no numbers.
● Reverse an empty string.

● This is a skill you'll build up with practice.

Parking Randomly

0 5Car has
length one

Parking Randomly

0 5

Parking Randomly

● Given a curb of length five, how many cars,
on average, can park on the curb?

● We can get an approximate value through
random simulation:
● Simulate random parking a large number of

times.
● Output the average number of cars that could

park.

● Question: How do we simulate parking
cars on the curb?

Parking Randomly

0 5x + 1x

Place cars randomly in these ranges!

Parking Randomly

int parkRandomly(double low, double high) {
 if (high - low < 1.0) {
 return 0;
 } else {
 double position = randomReal(low, high – 1.0);
 drawCarAt(position);

 return 1 + parkRandomly(low, position) +
 return 1 + parkRandomly(position + 1.0, high);
 }
}

The Parking Ratio

● The average number of cars that can be
parked in a range of width w for
sufficiently large w is approximately

0.7475972 w
● The constant 0.7475972... is called

Rényi's Parking Constant.
● For more details, visit this link!

http://mathworld.wolfram.com/RenyisParkingConstants.html

So What?

● The beauty of our algorithm is the
following recursive insight:

Split a problem into smaller,
independent pieces and solve each

piece separately.
● Many problems can be solved this way.

Next Time

● Graphical Recursion
● How do you draw a self-similar object?

● Exhaustive Recursion
● How do you generate all objects of some

type?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

