

Collections, Part One

Organizing Data

● In order to model and solve problems, we
have to have a way of representing
structured data.

● We need ways of representing concepts
like
● sequences of elements,
● sets of elements,
● associations between elements,
● etc.

Collections

● A collection class (or container class) is a
data type used to store and organize data in
some form.

● Understanding and using collection classes is
critical to good software engineering.

● Our next three lectures are dedicated to
exploring different collections and how to
harness them appropriately.

● Later in the quarter, we’ll see how these types
work and analyze their efficiencies. For now,
let’s just focus on how to use them.

Stack

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

137

42

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

42

137

271

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

271

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

271

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

42

137

0

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top of
the stack or popped from the top
of the stack.

● Only the top of the stack can be
accessed; no other objects in the
stack are visible.

● This is why it’s called the call stack
and we talk about stack traces.

0

42

137

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Let’s go code
this up!

Let’s go code
this up!

Objects in C++

● In Java, if you declare a variable like

Stack<String> myStack;

then myStack is not the actual stack; it’s a reference to it.
● As a result, you have to both declare the variable and

initialize it, like this:

Stack<String> myStack = new Stack<String>(); // Okay in Java

● In C++, if you write

Stack<string> myStack;

you get back an honest to goodness Stack<string>. It’s not a
reference to a Stack<string> or a pointer to one.

● As a result, in C++, you should not write

Stack<string> myStack = new Stack<string>(); // Error in C++!

Range-Based For Loops

● In C++, you can iterate over all the
characters of a string, in order, by
writing

 for (char ch: str) {
 // do something with ch
 }

● This same syntax can be used to iterate
over a bunch of other collections as well.

Our Algorithm

● For each character:
● If it’s an open parenthesis of some sort, push

it onto the stack.
● If it’s a close parenthesis of some sort:

– If the stack is empty, report an error.
– If the character doesn’t pair with the character on

top of the stack, report an error.

● At the end, return whether the stack is
empty (nothing was left unmatched.)

Other Stack Applications

● Stacks show up all the time in parsing,
recovering the structure in a piece of text.
● Often used in natural language processing; take

CS224N for details!
● Used all the time in compilers – take CS143 for details!

● They’re also used as building blocks in larger
algorithms for doing things like
● making sure a city’s road networks are navigable

(finding strongly connected components; take CS161
for details!) and

● searching for the best solution to a problem (stay
tuned!)

Queue

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137 42

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137 42 271

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

42 271

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

42 271 314

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

271 314

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

314

An Application: The Library of Babel

“[T]he Library is total and that its shelves register all the
possible combinations of the twenty-odd orthographical
symbols (a number which, though extremely vast, is not
infinite): Everything: the minutely detailed history of the
future, the archangels' autobiographies, the faithful
catalogues of the Library, thousands and thousands of
false catalogues, the demonstration of the fallacy of those
catalogues, the demonstration of the fallacy of the true
catalogue, the Gnostic gospel of Basilides, the
commentary on that gospel, the commentary on the
commentary on that gospel, the true story of your death,
the translation of every book in all languages, the
interpolations of every book in all books.”

-Jorge Luis Borges, The Library of Babel

Generating All Possible Strings

● Suppose we want to generate all possible
strings up to some fixed length.

● How might we do this?

"" "A" "B" "AA" "AB" "BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

""

""

"A" "B"

"AA" "AB" "BA" "BB"

""

""

"A" "B"

"AA" "AB" "BA" "BB"

""

""

"A" "B"

"AA" "AB" "BA" "BB"

"" "A" "B"

""

"A" "B"

"AA" "AB" "BA" "BB"

"A" "B"

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"

"AA" "AB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"B" "AA" "AB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"

"BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA" "AB" "BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA"

"AB" "BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA"

"AB" "BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB" "BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB"

"BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB"

"BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA" "BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA"

"BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA"

"BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

Let’s code it up!

Our Algorithm

● Start with the empty string in a queue.
● While there are still things in the queue:

● Pull one off.
● Print it.
● If it isn’t at the maximum length:

– For each possible next character:
● Put the string formed by appending that character back

into the queue.

Breadth-First Search

● This general algorithm is called breadth-
first search.

● It’s often used to find the fastest or best way
to do something, since it lists objects in
increasing order of “size.”

● The algorithm that Google Maps uses is
closely related to this algorithm. Stay tuned
for details!

● You’ll see some other applications of this
algorithm in Assignment 2.

Time-Out for Announcements!

Assignment 1

● Assignment 1 is due this upcoming Monday
at the start of class (11:30AM).

● Need help?
● Stop by the LaIR! 6PM – Midnight, Sundays

through Thursdays, on the ground floor of
Tresidder.

● Stop by Anton or Keith’s office hours!
● Ask questions on Piazza!
● Ask your section leader!

WiCS Casual CS Dinner

● WiCS is holding its first of its biquarter
Casual CS Dinners this upcoming
Monday, February 23 at 6PM in the
WCC.

● Highly recommended – these dinners are
a real highlight of the quarter.

● Interested? RSVP at

https://goo.gl/forms/TaiRja7K2L5bcocG3

https://goo.gl/forms/TaiRja7K2L5bcocG3

Many Happy Returns!

One Caveat

Memory Usage
""

"A" "B"

"AA" "AB" "BA" "BB"

"AAA" "AAB" "ABA" "ABB" "BAA" "BAB" "BBA" "BBB"

Memory Usage
""

"A" "B"

"AA" "AB" "BA" "BB"

"AAA" "AAB" "ABA" "ABB" "BAA" "BAB" "BBA" "BBB"

Memory Usage
""

"A" "B"

"AA" "AB" "BA" "BB"

"AAA" "AAB" "ABA" "ABB" "BAA" "BAB" "BBA" "BBB"

""

Memory Usage
""

"A" "B"

"AA" "AB" "BA" "BB"

"AAA" "AAB" "ABA" "ABB" "BAA" "BAB" "BBA" "BBB"

"A" "B"

Memory Usage
""

"A" "B"

"AA" "AB" "BA" "BB"

"AAA" "AAB" "ABA" "ABB" "BAA" "BAB" "BBA" "BBB"

"AA" "AB" "BA" "BB"

Memory Usage
""

"A" "B"

"AA" "AB" "BA" "BB"

"AAA" "AAB" "ABA" "ABB" "BAA" "BAB" "BBA" "BBB"

"AAA""AAB""ABA""ABB""BAA""BAB""BBA""BBB"

Memory Usage

● Currently, to generate all strings of
lengths 0, 1, 2, …, n, we might end up
having to hold roughly 26n strings in
memory.

● The size of a short string (on my
machine, at least) is 32 bytes.

● This means that trying to list all strings
of length seven should consume basically
all free resources on my computer.

● Watch what happens when we try that!

Changing our Data Structure

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

""

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

""

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"B"

"A"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"B"

"A"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"A"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"A"

"BA"

"BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"A"

"BA"

"BB"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"A"

"BA"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"A"

"BA"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"A"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"A"

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

""

"A" "B"

"AA" "AB" "BA" "BB"

Back to the Stack

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

add the empty string
while (data structure not empty) {
 string curr = get next string;
 process curr;

 if (curr isn’t too long) {
 for (each next possible string) {
 add that string
 }
 }
}

"AA"

"AB"

Let’s Code it Up!

Depth-First Search

● This algorithm is called depth-first search and
shows up everywhere in computer science:
● Checking resiliency of road networks to closures and

outages (2-edge connectivity)
● Ordering tasks while satisfying prerequisites

(topological sorting)

● Claim: The memory used by this algorithm is
dramatically lower than breadth-first search.

● Curious? Stay tuned in CS106B, and take a look
at CS161!

A Comparison

● Breadth-first search
(use a Queue):
● Time: ≈26n

● Space: ≈26n

● Lists everything in
increasing order of
length.

● But it’s a memory hog!

● Depth-first search
(use a Stack)
● Time: ≈26n

● Space: ≈n
● Very memory-efficient.

● But doesn’t list things
in increasing size
order.

Your Action Items

● Read Chapter 5 of the textbook, which
talks about container classes.

● Keep working on Assignment 1. Aim to
start working on that last part soon.

● Read the style guide up on the course
website for more information about good
programming style.

Next Time

● The Vector Type
● How do we store and manipulate sequences

in C++?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162

