

Strings and Streams

Recap from Last Time

Recursion on Numbers

● Here’s a recursive function that computes n!:

 int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
 }

● Here’s a recursive implementation of a function to compute
the sum of the digits of a number:

 int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
 }

New Stuff!

Digital Roots Revisited

● Here’s some code to compute the digital
root of a number:

 int digitalRootOf(int n) {
 while (n >= 10) {
 n = sumOfDigitsOf(n);
 }
 return n;
 }

● How might we write this recursively?

Digital Roots

Digital Roots

9 2 5 8The digital root of

Digital Roots

9 2 5 8The digital root of is the same as

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

9 2 5 8+ + +

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

2 4

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

2 4 which is the same as

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

2 4 which is the same as

The digital root of 2 4+

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

2 4 which is the same as

The digital root of 6

Thinking Recursively

if (problem is sufficiently simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem up into one or more smaller
 problems with the same structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall solution.

 Return the overall solution.

}

Strings in C++

Strings

● A string is a (possibly empty) sequence of
characters.

● Strings in C++ are conceptually similar to
strings in Java.

● There are several minor differences, like
● different names for similar methods and
● different behavior for similar methods

● And some really major differences.
● There are two types of strings in C++.

C++ Strings

● C++ strings are represented with the string type.
● To use string, you must

#include <string>

at the top of your program.
● You can get the number of characters in a string by

calling

str.length()
● You can read a single character in a string by writing

str[index]
● Despite the above syntax, C++ strings are not arrays;

it's just a convenient syntactic shortcut.

Operations on Characters

● In C++, the header <cctype> contains a
variety of useful functions that you can
apply to characters.

● The following functions check whether a
character is of a given type:

isalpha isdigit
isalnum islower isupper

isspace ispunct

Strings are Mutable

● Unlike Java strings, C++ strings are mutable
and can be modified.

● To change an individual character of a string,
write

str[index] = ch;
● To append more text, you can write

str += text;
● These operations directly change the string

itself, rather than making a copy of the string.

Other Important Differences

● In C++, the == operator can directly be used to compare
strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

 string allButFirstChar = str.substr(1);
 string allButFirstAndLast = str.substr(1, str.length() - 2);

p r a i s i n g
0 1 2 3 4 5 6 7

Other Important Differences

● In C++, the == operator can directly be used to compare
strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

 string allButFirstChar = str.substr(1);
 string allButFirstAndLast = str.substr(1, str.length() - 2);

p r a i s i n g
0 1 2 3 4 5 6 7

Other Important Differences

● In C++, the == operator can directly be used to compare
strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

 string allButFirstChar = str.substr(1);
 string allButFirstAndLast = str.substr(1, str.length() - 2);

p r a i s i n g
0 1 2 3 4 5 6 7

p g

Other Important Differences

● In C++, the == operator can directly be used to compare
strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

 string allButFirstChar = str.substr(1);
 string allButFirstAndLast = str.substr(1, str.length() - 2);

r a i s i n
0 1 2 3 4 5 6 7

Even More Differences

● In Java, you can concatenate just about
anything with a string.

● In C++, you can only concatenate strings
and characters onto other strings.

● We provide a library "strlib.h" to make
this easier.
string s = "He really likes " + integerToString(137);

And the Biggest Difference

● In C++, there are two types of strings:
● C-style strings, inherited from the C programming

language, and
● C++ strings, a library implemented in C++.

● Any string literal is a C-style string.
● Almost none of the operations we've just

described work on C-style strings.
● Takeaway point: Be careful with string literals

in C++.
● Use the string type whenever possible.

string s = "Nubian " + "ibex";

string s = "Nubian " + "ibex";

Each of these strings is a C-style
string, and C-style strings cannot

be added with +. This code
doesn't compile.

Each of these strings is a C-style
string, and C-style strings cannot

be added with +. This code
doesn't compile.

string s = "Nubian " + "ibex";

string s = string("Nubian ") + "ibex";

string s = string("Nubian ") + "ibex";

Now that we explicitly add a cast from a
C-style string to a C++-style string, this code

is legal. If you need to perform
concatenations like this ones, make sure to cast
at least one of the string literals to a C++

string.

Now that we explicitly add a cast from a
C-style string to a C++-style string, this code

is legal. If you need to perform
concatenations like this ones, make sure to cast
at least one of the string literals to a C++

string.

string s = string("Nubian ") + "ibex";

Time-Out for Announcements!

Assignment 1

● Assignment 1: Welcome to C++ goes out
today. It’s due on Monday, January 23rd at the
start of class.
● Play around with C++ and the Stanford libraries!
● Get some practice with recursion.
● Explore the debugger!
● Teach the computer to read, sorta. ☺

● LaIR hours begin on Monday because of the
national holiday.

The CS106B Grading Scale

++

+

✓+

✓

✓-

-

--

0

Assignment Grading

● You will receive two scores: a functionality score and a style
score.

● The functionality score is based on correctness.
● Do your programs produce the correct output?
● Do they work on all legal inputs?
● etc.

● The style score is based on how well your program is
written.

● Are your programs well-structured?
● Do you decompose problems into smaller pieces?
● Do you use variable naming conventions consistently?
● etc.

Late Days

● Everyone has two free “late days” to use
as needed.

● A “late day” is an automatic extension for
one class period (Monday to Wednesday,
Wednesday to Friday, or Friday to
Monday).

● If you need an extension beyond late
days, please talk to Anton. Your section
leader cannot grant extensions.

Section Signups

● Section signups are open right now.
They close Sunday at 5PM.

● Sign up for section at

http://cs198.stanford.edu/section
● Link available on the CS106B course

website.

http://cs198.stanford.edu/section

One More Unto the Breach!

Recursion and Strings

Thinking Recursively

1 2 5 8

1 2 5 8

Thinking Recursively

I B E X

I B E X

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

P"" +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

P

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

O +

P

P

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

O

P

P

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

T +

O

P

P

OP

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

T

O

P

P

OP

C++ Streams

Getting Data from Files

● File reading in C++ is a lot easier than
file reading in Java.

● To open and read from a file in C++, you
use the ifstream (input file stream) class.

● It’s exported by the <fstream> header.

Reading Line by Line

● You can read a line out of an ifstream by using the getline
function:

getline(file, str)
● (Notice this is all lower case, in contrast to the getLine

function from simpio.h).
● The canonical “read each line of a file loop” is shown here:

 string line;
 while (getline(file, line)) {
 /* … process line … */
 }

● Chapter 4 of the course reader has more details about file
I/O in C++; highly recommended!

Recap from Today

● Recursion is everywhere!
● C++ strings are mutable, look like arrays, and

have a slightly different syntax than Java Strings.
● There are two kinds of C++ strings, string

objects and C-style strings. C-style strings are
Hairy and Scary.

● Recursion applies to strings just as it does
everything else!

● File reading in C++ isn’t that bad!

Your Action Items

● Read Chapter 3 and Chapter 4 of the
textbook to learn more about strings and
to get an intro to file processing.

● Start working on Assignment 1. Try to
complete some of the earlier problems by
our next class meeting.

Next Time

● The Vector Type
● Storing sequences in C++!

● Recursion on Vectors.
● Of course. ☺

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	After this slide, do a quick char-by-char printing example.
	Now do "remove punctuation and spaces"
	Do "convertToUpperCase"
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

