

Hashing
Part Two

Recap from Last Time

Hash Functions

● A hash function is a function that converts a
large object (a genome, a string, a sequence of
elements, etc.) into a smaller object (a shorter
string, an integer, etc.)

● A hash function must be deterministic: given an
input, it must always produce the same output.

● Why?

● A hash function should try to produce different
outputs for different inputs.

● Not always possible if there are only finitely many
possible outputs.

Overview of Our Approach

● To store key/value pairs efficiently, we
will do the following:
● Create a lot of buckets into which key/value

pairs can be distributed.
● Use a hash function to associate each

possible key with a bucket.
● To look up the value associated with a key:

– Jump into the bucket containing that key.
– Look at all the values in the bucket until you find

the one associated with the key.

Building a Hash Table

Quick Announcements!

Apply to Section Lead!
http://cs198.stanford.edu

http://cs198.stanford.edu/

Casual CS Dinner

● Casual dinner for women studying
computer science is next Thursday, May
23 at 5:30PM at the Gates Patio.

● Everyone is welcome!
● RSVP through link sent out Friday, or at

http://bit.ly/cscasualdinners

http://bit.ly/cscasualdinners

YEAH Hours

● YEAH Hours (assignment review session)
for Assignment 5 is tomorrow, May 21st
in Gates B12 from 5:30PM – 6:30PM.
● We will post notes on the course website.

} // End announcements

Hash Table Performance

● Suppose that we have n elements and b
buckets.

● Assuming a good hash function, the
expected time to look up an element is
O(1 + n / b).

● The ratio n / b is called the load factor.
● Intuitively, this makes sense – if the

elements are distributed evenly, you only
need to look, on average, at n / b of them.

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Hagrid Snape

Draco Minerva

Lily

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Hagrid

Voldemort

Snape

Draco Minerva

Lily

Hashing and Rehashing

0 1 2

Harry

HermioneRon

Dumbledore Hagrid

Voldemort

Snape

Draco

Minerva Lily

3 4 5

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore Hagrid Voldemort

SnapeDraco

Minerva Lily

3 4 5

Hashing and Rehashing

● Idea: Track the number of buckets b and the
number of total elements n.

● When inserting, if n/b exceeds some small
constant (say, 2), double the number of buckets
and redistribute the elements evenly.

● This makes n/b ≤ 2, so the expected lookup
time in a hash table is O(1).

● On average, the lookup time is independent of
the total number of elements in the table!

X Q

H

V

Z J

X Q

H

V

Z J

X Q

H

V

Z J

XQ

H

V

Z J

XQ

H

V

Z J

XQ

H

V

Z J

XQ

H

V Z

J

XQ

H

V Z

J

XQ

H

V Z

J

XQ HV Z

J

XQ HV Z

J

Coding it Up

The Final Analysis

● Expected time to do a lookup: O(1).
● Expected time to do an insertion:

● Every n elements, must double the table size
and rehash. Does O(n) work, but only every
n iterations.

● Then does O(1) expected work to do the
insertion.

● Amortized expected O(1) insertion!

Next Time

● Binary Search Trees
● How else might you store a large number of

key/value pairs?
● And why are our Map and Set stored in

sorted order?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

