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Recap from Last Time



  

Hash Functions

● A hash function is a function that converts a 
large object (a genome, a string, a sequence of 
elements, etc.) into a smaller object (a shorter 
string, an integer, etc.)

● A hash function must be deterministic: given an 
input, it must always produce the same output.

● Why?

● A hash function should try to produce different 
outputs for different inputs.

● Not always possible if there are only finitely many 
possible outputs.



  

Overview of Our Approach

● To store key/value pairs efficiently, we 
will do the following:
● Create a lot of buckets into which key/value 

pairs can be distributed.
● Use a hash function to associate each 

possible key with a bucket.
● To look up the value associated with a key:

– Jump into the bucket containing that key.
– Look at all the values in the bucket until you find 

the one associated with the key.



  

Building a Hash Table



  

Quick Announcements!



  

Apply to Section Lead!
http://cs198.stanford.edu

http://cs198.stanford.edu/


  

Casual CS Dinner

● Casual dinner for women studying 
computer science is next Thursday, May 
23 at 5:30PM at the Gates Patio.

● Everyone is welcome!
● RSVP through link sent out Friday, or at

http://bit.ly/cscasualdinners    

http://bit.ly/cscasualdinners


  

YEAH Hours

● YEAH Hours (assignment review session) 
for Assignment 5 is tomorrow, May 21st 
in Gates B12 from 5:30PM – 6:30PM.
● We will post notes on the course website.



  

} // End announcements



  

Hash Table Performance

● Suppose that we have n elements and b 
buckets.

● Assuming a good hash function, the 
expected time to look up an element is 
O(1 + n / b).

● The ratio n / b is called the load factor.
● Intuitively, this makes sense – if the 

elements are distributed evenly, you only 
need to look, on average, at n / b of them.



  

Hashing and Rehashing
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Hashing and Rehashing

● Idea: Track the number of buckets b and the 
number of total elements n.

● When inserting, if n/b exceeds some small 
constant (say, 2), double the number of buckets 
and redistribute the elements evenly.

● This makes n/b ≤ 2, so the expected lookup 
time in a hash table is O(1).

● On average, the lookup time is independent of 
the total number of elements in the table! 
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Coding it Up



  

The Final Analysis

● Expected time to do a lookup: O(1).
● Expected time to do an insertion:

● Every n elements, must double the table size 
and rehash.  Does O(n) work, but only every 
n iterations.

● Then does O(1) expected work to do the 
insertion.

● Amortized expected O(1) insertion!



  

Next Time

● Binary Search Trees
● How else might you store a large number of 

key/value pairs?
● And why are our Map and Set stored in 

sorted order?
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