Designing Abstractions



Fundamental Question

How do our tools work?



Classes

 Vector, Stack, Queue, Map, etc. are
classes in C++.

e Classes contain

 An interface specifying what operations can
be performed on instances of the class.

 An implementation specifying how those
operations are to be performed.

« To define our own classes, we must
define both the interface and the
implementation.



Random Bags

A random bag is a data structure similar to a
stack or queue.

 Supports two operations:

 Add, which adds an element to the random bag,
and

« Remove random, which returns and removes a
random element from the bag.

 Has several applications:

« Random maze generation
« Shuffling decks of cards.



Let's Code it Up!



Classes in C++

* Defining a class in C++ (typically)
requires two steps:

* Create a header file (typically suffixed
with .h) describing the class's member

functions and data members.

* Create an implementation file (typically
suffixed with .cpp) that contains the
implementation of all the class's member
functions.

e Clients of the class can then include the
header file to use the class.



Midterm Logistics

« Midterm room assignments will be
changing.

e You should receive an email about
this by the end of the night.

My sincerest apologies - this is the first
time this has ever happened. We'll do
our best to ensure this doesn't happen
again.



Language Philosophy

« Every programming language exports
some set of primitives:

e Primitive data types (int, char, etc.)
 Functions

* Classes

e etc.

« We can use those primitives to construct
a larger set of primitives:

« Vector, RandomBag, etc.



Where Does it Stop?

 The collections we've been using are not
primitives in C++; they are defined in
terms of other language features.

 Understanding those features will let us
analyze their efficiency.

 Understanding those features will let us
build other interesting abstractions.



All About Memory



What is Memory?

« All variables and objects in C++ need
somewhere to live inside the computer's
mMemory.

« This is RAM, by the way, not disk space.

« Whenever an object is created, space
needs to be reserved for it.

« Where does this memory come from?



Memory So Far

« So far, you have seen two types of variables:

« Local variables declared inside a function.

 Space is reserved for these variables when the
function is called.

 Space is reclaimed from these variables when the
function call ends.

« Global variables / constants declared outside a
function.

 Space is reserved for these variables when the
program stars up.

« Space is reclaimed from these variables when the
program exits.



Getting Space

int main() {
Vector<int> wvalues;

int numValues = getInteger ("How many?") ;
for (int 1 = 0; i < numValues; i++) {
values += 1;

}



Getting Storage Space

« How do the Vector, Stack, Queue, etc.

get space to store all the elements that
they hold?

o C code can request extra storage
space as the program is running.

» This is called dynamic memory
allocation.



Good luck on the exam!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

