

Algorithmic Analysis and Sorting
Part One

Announcements

● Solutions to warm-up recursion problems
have been posted.

● Midterm is next Tuesday, May 7 from
7PM – 10PM.
● Location TBA.
● More details next time.
● Please email Dawson ASAP if you have a

conflict with the exam time.

Fundamental Question:

How can we compare solutions to
problems?

One Idea: Runtime

Why Runtime Isn't a Good Metric

● Fluctuates between computer to
computer and from run to run.

● Fluctuates based on inputs.
● Doesn't predict behavior for larger

inputs.

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

 }
 }

return false;
}

Work Done: At most k0n + k1

Big-Observations

● Don't need to explicitly compute these
constants.
● Whether runtime is 4n + 10 or 100n + 137,

runtime is still proportional to input size.
● Can just plot the runtime to obtain actual

values.

● Only the dominant term matters.
● For both 4n + 1000 and n + 137, for very

large n most of the runtime is explained by
n.

● Is there a concise way of describing this?

Big-Observations

Big-ObservationsNotation

● Ignore everything except the dominant
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)

Algorithmic Analysis with Big-O

Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

return total / vec.size();
}

O(n)

A More Interesting Example

A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

 }
 }

return false;
}

A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

 }
 }

return false;
}

How do we analyze this?

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for "sleeping well at night."

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some

cases.

● Average-Case Analysis
● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109,

CS161, CS365, or CS369N for more information!

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for "sleeping well at night."

Best-Case Analysis

What's the best possible runtime for the algorithm?

Useful to see if the algorithm performs well in some
cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109,
CS161, CS365, or CS369N for more information!

A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

 }
 }

return false;
} O(n)

Determining if a Character is a Letter

Determining if a Character is a Letter

bool isAlpha(char ch) {
 return (ch >= 'A' && ch <= 'Z') ||
 (ch >= 'a' && ch <= 'z');
}

Determining if a Character is a Letter

bool isAlpha(char ch) {
 return (ch >= 'A' && ch <= 'Z') ||
 (ch >= 'a' && ch <= 'z');
}

O(1)

What Can Big-O Tell Us?

● Long-term behavior of a function.
● If algorithm A has runtime O(n) and

algorithm B has runtime O(n2), for very large
inputs algorithm A will always be faster.

● If algorithm A has runtime O(n), for large
inputs, doubling the size of the input doubles
the runtime.

What Can't Big-O Tell Us?

● The actual runtime of a function.
● 10100n = O(n)
● 10-100n = O(n)

● How a function behaves on small inputs.
● n3 = O(n3)
● 106 = O(1)

 0

2

4

6

8

10

12

14

16

Growth Rates, Part One

O(1)
O(log n)
O(n)

 0

50

100

150

200

250

Growth Rates, Part Two

O(n)
O(n log n)
O(n^2)

 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Growth Rates, Part Three

O(n^2)
O(n^3)
O(2^n)

 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To Give You A Better Sense...

O(1)
O(log n)
O(n)
O(n log n)
O(n^2)
O(n^3)
O(2^n)

 1

10

100

1000

10000

Once More with Logarithms

O(1)
O(log n)
O(n)
O(n log n)
O(n^2)
O(n^3)
O(2^n)

Size 1 lg n n n log n n2 n3 2n

100 1μs 7μs 100μs 0.7ms 10ms <1min 40 quadrillion yrs

200 1μs 8μs 200μs 1.5ms 40ms <1min Just... wow.

300 1μs 8μs 300μs 2.5ms 90ms 1min

400 1μs 9μs 400μs 3.5ms 160ms 2min

500 1μs 9μs 500μs 4.5ms 250ms 4min

600 1μs 9μs 600μs 5.5ms 360ms 6min

700 1μs 9μs 700μs 6.6ms 490ms 9min

800 1μs 10μs 800μs 7.7ms 640ms 12min

900 1μs 10μs 900μs 8.8ms 810ms 17min

1000 1μs 10μs 1000μs 10ms 1000ms 22min

1100 1μs 10μs 1100μs 11ms 1200ms 29min

1200 1μs 10μs 1200μs 12ms 1400ms 37min

1300 1μs 10μs 1300μs 13ms 1700ms 45min

1400 1μs 10μs 1400μs 15ms 2000ms 56min

Comparison of Runtimes
(1 operation = 1 microsecond)

Summary of Big-O

● A means of describing the growth rate of
a function.

● Ignores all but the leading term.
● Ignores constants.
● Allows for quantitative ranking of

algorithms.
● Allows for quantiative reasoning about

algorithms.

Sorting Algorithms

The Sorting Problem

● Given a list of elements, sort those
elements in ascending order.

● There are many ways to solve this
problem.

● What is the best way to solve this
problem?

● We'll use big-O to find out!

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

721 64

An Initial Idea: Selection Sort

721 64

An Initial Idea: Selection Sort

721 64

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

72 641

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

Selection Sort

● Find the smallest element and move it to
the first position.

● Find the second-smallest element and
move it to the second position.

● (etc.)

Code for Selection Sort
void selectionSort(Vector<int>& elems) {
 for (int index = 0; index < elems.size(); index++) {
 int smallestIndex = indexOfSmallest(elems, index);
 swap(elems[index], elems[smallestIndex]);
 }
}

int indexOfSmallest(Vector<int>& elems, int startPoint) {
 int smallestIndex = startPoint;
 for (int i = startPoint + 1; i < elems.size(); i++) {
 if (elems[i] < elems[smallestIndex])
 smallestIndex = i;
 }
 return smallestIndex;
}

Analyzing Selection Sort

● How much work do we do for selection
sort?

● To find the smallest value, we need to
look at all n array elements.

● To find the second-smallest value, we
need to look at n – 1 array elements.

● To find the third-smallest value, we need
to look at n – 2 array elements.

● Work is n + (n – 1) + (n – 2) + … + 1.

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2

The Complexity of Selection Sort

 O(n (n + 1) / 2)

= O(n (n + 1))

= O(n2 + n)

= O(n2)

So selection sort runs in time O(n2).

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

??? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

??? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ?? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ?? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

? ?? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ? ?

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?

?? ? ??

Notes on Selection Sort

● Selection sort has runtime O(n2) in the
worst case.

● How about the best case?
● Also O(n2)
● Selection sort always takes O(n2) time.
● Notation: Selection sort is Θ(n2).

Thinking About O(n2)

Thinking About O(n2)

14 6 3 9 7 16 2 15

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(2n) ≈ 4T(n)

Selection Sort Times

Size Selection Sort

10000 0.304

20000 1.218

30000 2.790

40000 4.646

50000 7.395

60000 10.584

70000 14.149

80000 18.674

90000 23.165

Next Time

● Faster Sorting Algorithms
● Can you beat O(n2) time?

● Hybrid Sorting Algorithms
● When might selection sort be useful?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

