
  

Algorithmic Analysis and Sorting
Part One



  

Announcements

● Solutions to warm-up recursion problems 
have been posted.

● Midterm is next Tuesday, May 7 from 
7PM – 10PM.
● Location TBA.
● More details next time.
● Please email Dawson ASAP if you have a 

conflict with the exam time.



  

Fundamental Question:

How can we compare solutions to 
problems?



  

One Idea: Runtime



  

Why Runtime Isn't a Good Metric

● Fluctuates between computer to 
computer and from run to run.

● Fluctuates based on inputs.
● Doesn't predict behavior for larger 

inputs.



  

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

    }
  }

return false;
}

Work Done: At most k0n + k1



  

Big-Observations

● Don't need to explicitly compute these 
constants.
● Whether runtime is 4n + 10 or 100n + 137, 

runtime is still proportional to input size.
● Can just plot the runtime to obtain actual 

values.

● Only the dominant term matters.
● For both 4n + 1000 and n + 137, for very 

large n most of the runtime is explained by 
n.

● Is there a concise way of describing this?



  

Big-Observations



  

Big-ObservationsNotation

● Ignore everything except the dominant 
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)



  

Algorithmic Analysis with Big-O



  

Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

return total / vec.size();
}
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Algorithmic Analysis with Big-O

double average(Vector<int>& vec) {
double total = 0.0;

  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
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return total / vec.size();
}

O(n)
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bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;
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A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

    }
  }

return false;
}

How do we analyze this?



  

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for "sleeping well at night."

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some 

cases.

● Average-Case Analysis
● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109, 

CS161, CS365, or CS369N for more information!
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● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for "sleeping well at night."

Best-Case Analysis

What's the best possible runtime for the algorithm?

Useful to see if the algorithm performs well in some 
cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109, 
CS161, CS365, or CS369N for more information!



  

A More Interesting Example

bool linearSearch(string& str, char ch) {
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) {
return true;

    }
  }

return false;
} O(n)



  

Determining if a Character is a Letter



  

Determining if a Character is a Letter

bool isAlpha(char ch) {
   return (ch >= 'A' && ch <= 'Z') ||
          (ch >= 'a' && ch <= 'z');
}



  

Determining if a Character is a Letter

bool isAlpha(char ch) {
   return (ch >= 'A' && ch <= 'Z') ||
          (ch >= 'a' && ch <= 'z');
}

O(1)



  

What Can Big-O Tell Us?

● Long-term behavior of a function.
● If algorithm A has runtime O(n) and 

algorithm B has runtime O(n2), for very large 
inputs algorithm A will always be faster.

● If algorithm A has runtime O(n), for large 
inputs, doubling the size of the input doubles 
the runtime.



  

What Can't Big-O Tell Us?

● The actual runtime of a function.
● 10100n = O(n)
● 10-100n = O(n)

● How a function behaves on small inputs.
● n3 = O(n3)
● 106 = O(1)
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Size 1 lg n n n log n n2 n3 2n

100 1μs 7μs 100μs 0.7ms 10ms <1min 40 quadrillion yrs

200 1μs 8μs 200μs 1.5ms 40ms <1min Just... wow.

300 1μs 8μs 300μs 2.5ms 90ms 1min

400 1μs 9μs 400μs 3.5ms 160ms 2min

500 1μs 9μs 500μs 4.5ms 250ms 4min

600 1μs 9μs 600μs 5.5ms 360ms 6min

700 1μs 9μs 700μs 6.6ms 490ms 9min

800 1μs 10μs 800μs 7.7ms 640ms 12min

900 1μs 10μs 900μs 8.8ms 810ms 17min

1000 1μs 10μs 1000μs 10ms 1000ms 22min

1100 1μs 10μs 1100μs 11ms 1200ms 29min

1200 1μs 10μs 1200μs 12ms 1400ms 37min

1300 1μs 10μs 1300μs 13ms 1700ms 45min

1400 1μs 10μs 1400μs 15ms 2000ms 56min

Comparison of Runtimes
(1 operation = 1 microsecond)



  

Summary of Big-O

● A means of describing the growth rate of 
a function.

● Ignores all but the leading term.
● Ignores constants.
● Allows for quantitative ranking of 

algorithms.
● Allows for quantiative reasoning about 

algorithms.



  

Sorting Algorithms



  

The Sorting Problem

● Given a list of elements, sort those 
elements in ascending order.

● There are many ways to solve this 
problem.

● What is the best way to solve this 
problem?

● We'll use big-O to find out!



  

An Initial Idea: Selection Sort
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Selection Sort

● Find the smallest element and move it to 
the first position.

● Find the second-smallest element and 
move it to the second position.

● (etc.)



  

Code for Selection Sort
void selectionSort(Vector<int>& elems) {
  for (int index = 0; index < elems.size(); index++) {
    int smallestIndex = indexOfSmallest(elems, index);
    swap(elems[index], elems[smallestIndex]);
  }
}

int indexOfSmallest(Vector<int>& elems, int startPoint) {
  int smallestIndex = startPoint;
  for (int i = startPoint + 1; i < elems.size(); i++) {
    if (elems[i] < elems[smallestIndex])
      smallestIndex = i;
  }
  return smallestIndex;
}



  

Analyzing Selection Sort

● How much work do we do for selection 
sort?

● To find the smallest value, we need to 
look at all n array elements.

● To find the second-smallest value, we 
need to look at n – 1 array elements.

● To find the third-smallest value, we need 
to look at n – 2 array elements.

● Work is n + (n – 1) + (n – 2) + … + 1.



  

n + (n-1) + ... + 2 + 1             

n

n + 1

= n(n+1) / 2



  

The Complexity of Selection Sort

   O(n (n + 1) / 2)

= O(n (n + 1))

= O(n2 + n)

= O(n2)

So selection sort runs in time O(n2).



  

Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?

? ? ? ? ?
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Notes on Selection Sort

● Selection sort has runtime O(n2) in the 
worst case.

● How about the best case?
● Also O(n2)
● Selection sort always takes O(n2) time.
● Notation: Selection sort is Θ(n2).



  

Thinking About O(n2)
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Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(2n) ≈ 4T(n)



  

Selection Sort Times

Size Selection Sort

10000 0.304

20000 1.218

30000 2.790

40000 4.646

50000 7.395

60000 10.584

70000 14.149

80000 18.674

90000 23.165



  

Next Time

● Faster Sorting Algorithms
● Can you beat O(n2) time?

● Hybrid Sorting Algorithms
● When might selection sort be useful?
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