Algorithmic Analysis and Sorting Part One

Announcements

- Solutions to warm-up recursion problems have been posted.
- Midterm is next Tuesday, May 7 from 7PM - 10PM.
 - Location TBA.
 - More details next time.
 - Please email Dawson ASAP if you have a conflict with the exam time.

Fundamental Question:

How can we compare solutions to problems?

One Idea: Runtime

Why Runtime Isn't a Good Metric

- Fluctuates between computer to computer and from run to run.
- Fluctuates based on inputs.
- Doesn't predict behavior for larger inputs.

```
bool linearSearch(string& str, char ch) {
    for (int i = 0; i < str.length(); i++) {
        if (str[i] == ch) {
            return true;
        }
    }
    return false;
}</pre>
```

```
Work Done: At most k_0 n + k_1
```

Big Observations

- Don't need to explicitly compute these constants.
 - Whether runtime is 4n + 10 or 100n + 137, runtime is still proportional to input size.
 - Can just plot the runtime to obtain actual values.
- Only the dominant term matters.
 - For both 4n + 1000 and n + 137, for very large *n* most of the runtime is explained by *n*.
- Is there a concise way of describing this?

Big-O

Big-O Notation

- Ignore *everything* except the dominant growth term, including constant factors.
- Examples:
 - 4n + 4 = 0(n)
 - 137n + 271 = O(n)
 - $n^2 + 3n + 4 = O(n^2)$
 - $2^n + n^3 = \mathbf{O}(2^n)$

```
double average(Vector<int>& vec) {
   double total = 0.0;
   for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
   }
   return total / vec.size();</pre>
```

}

```
double average(Vector<int>& vec) {
   double total = 0.0;
   for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
   }
   return total / vec.size();</pre>
```

}

```
double average(Vector<int>& vec) {
   double total = 0.0;
   for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
   }
   return total / vec.size();
}</pre>
```

O(n)

```
bool linearSearch(string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {
    if (str[i] == ch) {
        return true;
    }
    }
    return false;
}</pre>
```

```
bool linearSearch(string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {</pre>
    if (str[i] == ch) {
      return true;
  return false;
}
         How do we analyze this?
```

Types of Analysis

- Worst-Case Analysis
 - What's the *worst* possible runtime for the algorithm?
 - Useful for "sleeping well at night."
- Best-Case Analysis
 - What's the *best* possible runtime for the algorithm?
 - Useful to see if the algorithm performs well in some cases.
- Average-Case Analysis
 - What's the *average* runtime for the algorithm?
 - Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

Types of Analysis

- Worst-Case Analysis
 - What's the *worst* possible runtime for the algorithm?
 - Useful for "sleeping well at night."

Best-Case Analysis

What's the *best* possible runtime for the algorithm? Useful to see if the algorithm performs well in some cases.

Average-Case Analysis

What's the *average* runtime for the algorithm?

Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

```
bool linearSearch(string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {</pre>
    if (str[i] == ch) {
       return true;
  return false;
}
                    O(n)
```

Determining if a Character is a Letter

Determining if a Character is a Letter

```
bool isAlpha(char ch) {
    return (ch >= 'A' && ch <= 'Z') ||
        (ch >= 'a' && ch <= 'z');</pre>
```

}

Determining if a Character is a Letter

bool isAlpha(char ch) { return (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z');</pre>

}

O(1)

What Can Big-O Tell Us?

- Long-term behavior of a function.
 - If algorithm A has runtime O(n) and algorithm B has runtime $O(n^2)$, for very large inputs algorithm A will always be faster.
 - If algorithm A has runtime O(*n*), for large inputs, doubling the size of the input doubles the runtime.

What Can't Big-O Tell Us?

- The actual runtime of a function.
 - $10^{100}n = O(n)$
 - $10^{-100}n = O(n)$
- How a function behaves on small inputs.
 - $n^3 = O(n^3)$
 - $10^6 = O(1)$

Growth Rates, Part One

Growth Rates, Part Two

Growth Rates, Part Three

To Give You A Better Sense...

Once More with Logarithms

Comparison of Runtimes

(1 operation = 1 microsecond)

Size	1	lg n	n	n log n	n ²	n ³
100	1µs	7µs	100µs	0.7ms	10ms	<1min
200	1µs	8µs	200µs	1.5ms	40ms	<1min
300	1µs	8µs	300µs	2.5ms	90ms	1min
400	1µs	9µs	400µs	3.5ms	160ms	2min
500	1µs	9µs	500µs	4.5ms	250ms	4min
600	1µs	9µs	600µs	5.5ms	360ms	6min
700	1µs	9µs	700µs	6.6ms	490ms	9min
800	1µs	10µs	800µs	7.7ms	640ms	12min
900	1µs	10µs	900µs	8.8ms	810ms	17min
1000	1µs	10µs	1000µs	10ms	1000ms	22min
1100	1µs	10µs	1100µs	11ms	1200ms	29min
1200	1µs	10µs	1200µs	12ms	1400ms	37min
1300	1µs	10µs	1300µs	13ms	1700ms	45min
1400	1µs	10µs	1400µs	15ms	2000ms	56min

Summary of Big-O

- A means of describing the growth rate of a function.
- Ignores all but the leading term.
- Ignores constants.
- Allows for quantitative ranking of algorithms.
- Allows for quantiative reasoning about algorithms.

Sorting Algorithms

The Sorting Problem

- Given a list of elements, sort those elements in ascending order.
- There are *many* ways to solve this problem.
- What is the **best** way to solve this problem?
- We'll use big-O to find out!

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

Selection Sort

- Find the smallest element and move it to the first position.
- Find the second-smallest element and move it to the second position.
- (etc.)

Code for Selection Sort

```
void selectionSort(Vector<int>& elems) {
  for (int index = 0; index < elems.size(); index++) {</pre>
    int smallestIndex = indexOfSmallest(elems, index);
    swap(elems[index], elems[smallestIndex]);
int indexOfSmallest(Vector<int>& elems, int startPoint) {
  int smallestIndex = startPoint;
  for (int i = startPoint + 1; i < elems.size(); i++) {</pre>
    if (elems[i] < elems[smallestIndex])</pre>
      smallestIndex = i;
  }
  return smallestIndex;
```

Analyzing Selection Sort

- How much work do we do for selection sort?
- To find the smallest value, we need to look at all *n* array elements.
- To find the second-smallest value, we need to look at n 1 array elements.
- To find the third-smallest value, we need to look at n 2 array elements.
- Work is $n + (n 1) + (n 2) + \dots + 1$.

n + (n-1) + ... + 2 + 1 = n(n+1) / 2

The Complexity of Selection Sort

O(n (n + 1) / 2)

- = O(n (n + 1))
- $= \mathrm{O}(n^2 + n)$
- $= O(n^2)$

So selection sort runs in time $O(n^2)$.

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?

- Selection sort has runtime $O(n^2)$ in the worst case.
- How about the best case?
- Also $O(n^2)$
- Selection sort *always* takes $O(n^2)$ time.
- Notation: Selection sort is $\Theta(n^2)$.

14 6 3 9 7 16 2 15

14	6	3	9	7	16	2	15	5	10	8	11	1	13	12	4

 $\mathrm{T}(2n) \approx 4\mathrm{T}(n)$

Selection Sort Times

Size	Selection Sort
10000	0.304
20000	1.218
30000	2.790
40000	4.646
50000	7.395
60000	10.584
70000	14.149
80000	18.674
90000	23.165

Next Time

- Faster Sorting Algorithms
 - Can you beat $O(n^2)$ time?
- Hybrid Sorting Algorithms
 - When might selection sort be useful?