Algorithmic Analysis and Sorting Part One

Announcements

- Solutions to warm-up recursion problems have been posted.
- Midterm is next Tuesday, May 7 from 7PM - 10PM.
- Location TBA.
- More details next time.
- Please email Dawson ASAP if you have a conflict with the exam time.

Fundamental Question:

How can we compare solutions to problems?

One Idea: Runtime

Why Runtime Isn't a Good Metric

- Fluctuates between computer to computer and from run to run.
- Fluctuates based on inputs.
- Doesn't predict behavior for larger inputs.
bool linearSearch(string\& str, char ch) \{ for (int i = 0; i < str.length(); i++) \{ if (str[i] == ch) \{ return true; \}
\}
return false;
\}
Work Done: At most $k_{0} n+k_{1}$

Big Observations

- Don't need to explicitly compute these constants.
- Whether runtime is $4 n+10$ or $100 n+137$, runtime is still proportional to input size.
- Can just plot the runtime to obtain actual values.
- Only the dominant term matters.
- For both $4 n+1000$ and $n+137$, for very large n most of the runtime is explained by n.
- Is there a concise way of describing this?

Big-O

Big-O Notation

- Ignore everything except the dominant growth term, including constant factors.
- Examples:
- $4 n+4=\mathbf{O}(n)$
- $137 n+271=\mathbf{O}(n)$
- $n^{2}+3 n+4=\mathbf{O}\left(\boldsymbol{n}^{2}\right)$
- $2^{n}+n^{3}=\mathbf{O}\left(2^{n}\right)$

Algorithmic Analysis with Big-O

Algorithmic Analysis with Big-O

double average(Vector<int>\& vec) \{
double total = 0.0;
for (int $i=0 ; i<v e c . s i z e() ; i++)\{$ total += vec[i];
\}
return total / vec.size(); \}

Algorithmic Analysis with Big-O

double average(Vector<int>\& vec) \{
double total = 0.0;
for (int i = 0; i < vec.size(); i++) \{ total += vec[i];
\}
return total / vec.size(); \}

Algorithmic Analysis with Big-O

double average(Vector<int>\& vec) \{
double total = 0.0;
for (int i = 0; i < vec.size(); i++) \{ total += vec[i];
\}
return total / vec.size(); \}

$$
\mathrm{O}(\mathrm{n})
$$

A More Interesting Example

A More Interesting Example

bool linearSearch(string\& str, char ch) \{ for (int i = 0; i < str.length(); i++) \{ if (str[i] == ch) \{ return true;
\}
\}
return false;
\}

A More Interesting Example

bool linearSearch(string\& str, char ch) \{ for (int i = 0; i < str.length(); i++) \{ if (str[i] == ch) \{ return true;
\}
\}
return false;
\}
How do we analyze this?

Types of Analysis

- Worst-Case Analysis
- What's the worst possible runtime for the algorithm?
- Useful for "sleeping well at night."
- Best-Case Analysis
- What's the best possible runtime for the algorithm?
- Useful to see if the algorithm performs well in some cases.
- Average-Case Analysis
- What's the average runtime for the algorithm?
- Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

Types of Analysis

- Worst-Case Analysis
- What's the worst possible runtime for the algorithm?
- Useful for "sleeping well at night."

Best-Case Analysis
What's the best possible runtime for the algorithm?
Useful to see if the algorithm performs well in some cases.

Average-Case Analysis
What's the average runtime for the algorithm?
Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

A More Interesting Example

bool linearSearch(string\& str, char ch) \{ for (int i = 0; i < str.length(); i++) \{ if (str[i] == ch) \{ return true;
\}
\}
return false;
\}
O(n)

Determining if a Character is a Letter

Determining if a Character is a Letter

bool isAlpha(char ch) \{
return (ch >= 'A' \&\& ch <= 'Z') ||
(ch >= 'a' \&\& ch <= 'z');
\}

Determining if a Character is a Letter

bool isAlpha(char ch) \{
return (ch >= 'A' \&\& ch <= 'Z') ||
(ch >= 'a' \&\& ch <= 'z');
\}

O(1)

What Can Big-O Tell Us?

- Long-term behavior of a function.
- If algorithm A has runtime $O(n)$ and algorithm B has runtime $O\left(n^{2}\right)$, for very large inputs algorithm A will always be faster.
- If algorithm A has runtime $\mathrm{O}(n)$, for large inputs, doubling the size of the input doubles the runtime.

What Can't Big-O Tell Us?

- The actual runtime of a function.
- $10^{100} n=O(n)$
- $10^{-100} n=\mathrm{O}(n)$
- How a function behaves on small inputs.
- $n^{3}=\mathrm{O}\left(n^{3}\right)$
- $10^{6}=O(1)$

Growth Rates, Part One

Growth Rates, Part Two

—O(n)

- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- O($\left.n^{\wedge} 2\right)$

Growth Rates, Part Three

To Give You A Better Sense...

Once More with Logarithms

Comparison of Runtimes

(1 operation $=1$ microsecond)

Size	1	lgn	n	$n \log \mathrm{n}$	n^{2}	n^{3}
100	$1 \mu \mathrm{~s}$	$7 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	0.7 ms	10 ms	$<1 \mathrm{~min}$
200	$1 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$200 \mu \mathrm{~s}$	1.5 ms	40 ms	$<1 \mathrm{~min}$
300	$1 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$300 \mu \mathrm{~s}$	2.5 ms	90 ms	1 min
400	$1 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$	$400 \mu \mathrm{~s}$	3.5 ms	160 ms	2 min
500	$1 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$	$500 \mu \mathrm{~s}$	4.5 ms	250 ms	4 min
600	$1 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$	$600 \mu \mathrm{~s}$	5.5 ms	360 ms	6 min
700	$1 \mu \mathrm{~s}$	$9 \mu \mathrm{~s}$	$700 \mu \mathrm{~s}$	6.6 ms	490 ms	9 min
800	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$800 \mu \mathrm{~s}$	7.7 ms	640 ms	12 min
900	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$900 \mu \mathrm{~s}$	8.8 ms	810 ms	17 min
1000	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1000 \mu \mathrm{~s}$	10 ms	1000 ms	22 min
1100	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1100 \mu \mathrm{~s}$	11 ms	1200 ms	29 min
1200	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1200 \mu \mathrm{~s}$	12 ms	1400 ms	37 min
1300	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1300 \mu \mathrm{~s}$	13 ms	1700 ms	45 min
1400	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1400 \mu \mathrm{~s}$	15 ms	2000 ms	56 min

Summary of Big-O

- A means of describing the growth rate of a function.
- Ignores all but the leading term.
- Ignores constants.
- Allows for quantitative ranking of algorithms.
- Allows for quantiative reasoning about algorithms.

Sorting Algorithms

The Sorting Problem

- Given a list of elements, sort those elements in ascending order.
- There are many ways to solve this problem.
- What is the best way to solve this problem?
- We'll use big-O to find out!

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

Selection Sort

- Find the smallest element and move it to the first position.
- Find the second-smallest element and move it to the second position.
- (etc.)

Code for Selection Sort

```
void selectionSort(Vector<int>& elems) {
    for (int index = 0; index < elems.size(); index++) {
        int smallestIndex = indexOfSmallest(elems, index);
        swap(elems[index], elems[smallestIndex]);
    }
}
```

int indexOfSmallest(Vector<int>\& elems, int startPoint) \{
int smallestIndex $=$ startPoint;
for (int $i=s t a r t P o i n t+1 ; i<e l e m s . s i z e() ; i++)\{$
if (elems[i] < elems[smallestIndex])
smallestIndex $=$ i;
\}
return smallestIndex;
\}

Analyzing Selection Sort

- How much work do we do for selection sort?
- To find the smallest value, we need to look at all n array elements.
- To find the second-smallest value, we need to look at $n-1$ array elements.
- To find the third-smallest value, we need to look at $n-2$ array elements.
- Work is $n+(n-1)+(n-2)+\ldots+1$.

$$
n+(n-1)+\ldots+2+1=n(n+1) / 2
$$

$n+1$

The Complexity of Selection Sort

$$
\begin{aligned}
& \mathrm{O}(n(n+1) / 2) \\
= & \mathrm{O}(n(n+1)) \\
= & \mathrm{O}\left(n^{2}+n\right) \\
= & \mathrm{O}\left(n^{2}\right)
\end{aligned}
$$

So selection sort runs in time $\mathbf{O}\left(\boldsymbol{n}^{2}\right)$.

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?

Notes on Selection Sort

- Selection sort has runtime $O\left(n^{2}\right)$ in the worst case.
- How about the best case?
- Also O(n^{2})
- Selection sort always takes $\mathrm{O}\left(n^{2}\right)$ time.
- Notation: Selection sort is $\Theta\left(n^{2}\right)$.

Thinking About $\mathrm{O}\left(n^{2}\right)$

Thinking About $\mathrm{O}\left(n^{2}\right)$

$\begin{array}{llllllll}14 & 6 & 3 & 9 & 7 & 16 & 2 & 15\end{array}$

Thinking About $\mathrm{O}\left(n^{2}\right)$

$\begin{array}{llllllll}14 & 6 & 3 & 9 & 7 & 16 & 2 & 15\end{array}$

$\mathrm{T}(n)$

Thinking About $\mathrm{O}\left(n^{2}\right)$

14	6	3	9	7	16	2	15

$\mathrm{T}(n)$

| 14 | 6 | 3 | 9 | 7 | 16 | 2 | 15 | 5 | 10 | 8 | 11 | 1 | 13 | 12 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Thinking About $\mathrm{O}\left(n^{2}\right)$

$$
\begin{aligned}
& \begin{array}{llllllll}
14 & 6 & 3 & 9 & 7 & 16 & 2 & 15
\end{array} \\
& T(n) \\
& \begin{array}{lllllllll|l|l|l|l|l|l|l|l|l|}
14 & 6 & 3 & 9 & 7 & 16 & 2 & 15 & 5 & 10 & 8 & 11 & 1 & 13 & 12 & 4
\end{array} \\
& \mathrm{~T}(2 n) \approx 4 \mathrm{~T}(n)
\end{aligned}
$$

Selection Sort Times

Size	Selection Sort
10000	0.304
20000	1.218
30000	2.790
40000	4.646
50000	7.395
60000	10.584
70000	14.149
80000	18.674
90000	23.165

Next Time

- Faster Sorting Algorithms
- Can you beat $\mathrm{O}\left(n^{2}\right)$ time?
- Hybrid Sorting Algorithms
- When might selection sort be useful?

