Thinking Recursively

Part 111



A Quick Word of Thanks!



Subsets

 Given set S, a subset of S is a set formed by
choosing some number of elements from S.

 Examples:
e {0, 1,2} isasubsetof {0, 1, 2, 3,4, 5}
o {dikdik, ibex} is a subset of {dikdik, ibex}
e {A G C, T}tisasubsetof { A, B,C, D, ..., Z}
« { } C{a, b, c}
- {}C{}



Generating Subsets

« Base Case:

 The only subset of the empty set is the empty
set.

 Recursive Step:

e Fix some element x of the set.

« Generate all subsets of the set formed by
removing x from the main set.

 These subsets are subsets of the original set.

« All of the sets formed by adding x into those
subsets are subsets of the original set.



Reducing Memory Usage

 In many cases, we need to perform some
operation on each subset, but don't need
to actually store those subsets.

 Idea: Generate each subset, process it,
and then discard it.

 Question: How do we do this?



A Decision Tree
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A Decision Tree
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A Decision Tree
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Recursively Exploring Options

« Our recursive function needs to keep track of
« What choices we've made so far, and
« What choices we still need to make.

« Base Case:

« If there are no choices left, output the set we
formed from the choices we made.

 Recursive Step:

e Find the next choice to make.

« For each possible choice, recursively explore all
options formed from making that choice.



Permutations

A permutation of a sequence is a sequence
with the same elements, though possibly in a
different order.



Permutations

A permutation of a sequence is a sequence
with the same elements, though possibly in a
different order.




Permutations

A permutation of a sequence is a sequence
with the same elements, though p0531b1y in a
different order. -

 For example:

e E Pluribus Unum
E Unum Pluribus

Pluribus E Unum

Pluribus Unum E

Unum E Pluribus

Unum Pluribus E




Listing all Permutations

« Like subsets, permutations are an
important structure in programming.

 Listing all permutations is useful for
answering questions like these:

« What is the best order in which to perform a
series of tasks?

« What possible DNA strands can be made by
assembling smaller fragments together?



Generating Permutations

X, XX, X,
X, XXy X,

X, X, X, X,

X, X1 X5 X,

X, X 1 X, X,

X, X 1 X, X,

Xy XX, X,
Xy X1 X, X,

Xy X, X, X,

Xy X0 X, X,

Xy X, Xy X,

Xy Xy X, X,

X, X, X1 X,

X, X Xy X,
X, X X, X,

X, Xy X, X,

X, X3 X, X,

X, X, Xy X,

X, X, Xy X,

X, X, X3 X,
X, X, X, X,
X, Xy X, X,
X, Xy X, X,
X, X, X, X,
X, Xy Xy X,




Generating Permutations

X, X, X1 X,

X, X, X3 X,
X, X, X, X,
X, Xy X, X,
X, Xy X, X,
X, X, X, X,
X, Xy Xy X,




Generating Permutations

X, X, X1 X,

X, X, X3 X,
X, X, X, X,
X, Xy X, X,
X, Xy X, X,
X, Xy X, X,
X, Xy Xy X,




Generating Permutations

X, X, X1 X,

X, X, X3 X,
X, Xo X, X,

X, Xy X, X,

X, Xy X, X,

X, X, X, X,

X, X, Xy X,




Generating Permutations

X, X, X1 X,

X, Xy X3 X,
X, Xy X, X,

X, Xy X, X,

X, Xy X, X,

X, X, X, X,

X, Xy Xy X,




Generating Permutations

Xy X X, X,
Xy Xy X, X,

Xy X, X, X,

Xy X, X, X,

Xy X, X, X,

Xy X, X, X,

X, X, X1 X,




Generating Permutations

Xy X X, X,
Xy X X, X,

Xy X, X, X,

Xy X, X, X,

Xy X, X, X,

Xy X, X, X,

X, X, X1 X,




Generating Permutations

X, Xy X, X,
X, Xy X3 X,

X, X, X, X,

X, X, X5 X,

X, Xy X, X,

X, X3 X, X,

X, X, X1 X,




Generating Permutations

X, Xy X, X,
X, Xy X3 X,

X, X, X, X,

X, X, X5 X,

X, Xy X, X,

X, Xy X, X,

X, X, X1 X,




Generating Permutations

« Base Case:

 If the string is empty, there is just one
permutation - that string itself.

 Recursive Step:

 For each character in the string:

- Remove that character.
- Permute the rest of the string.
- Add that character back in.



Memory Usage... Again

How many permutations are there of an
n-element sequence?

Answer:-n X (n-1) X ... X2 x 1 = n!

Storing all permutations of n elements uses
at least n! memory.

Ifn=13, n! =6,227,020,800. We would
almost certainly run out of memory trying to
store all permutations of a 13-element
sequence in memaory.



Reducing Memory Usage

* As before, what if we just need to
perform some operation on each
permutation, rather than storing all of
them?

 Idea: Generate each permutation,
process it, then discard it.



A Decision Tree
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A Second Recursive Function

 Our recursive function needs to keep track of
« What choices we've made so far, and
« What choices we still need to make.

 Base Case:

« If there are no choices left, output the
permutation we formed from the choices made.

 Recursive Step:

e Find the next choice to make.

« For each possible choice, recursively explore all
options formed from making that choice.
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