
  

Thinking Recursively
Part II



  

Friday Four Square!
Today at 4:15PM, Outside Gates



Recursive Problem-Solving

if (problem is sufficiently simple) {

    Directly solve the problem.

    Return the solution.

 } else {

    Split the problem up into one or more smaller
        problems with the same structure as the original.

    Solve each of those smaller problems.

    Combine the results to get the overall solution.

    Return the overall solution.

}



A fractal image is an image that is defined
in terms of smaller versions of itself.



Fractal Trees

● We can generate a 
fractal tree as 
follows:
● Grow in some 

direction for a 
period of time.

● Then, split and 
grow smaller trees 
outward at some 
angle.





Methods in the Graphics Library

GWindow gw(width, height)
Creates a graphics window with the specified dimensions.

gw.drawLine(x0, y0, x1, y1)
Draws a line connecting the points (x0, y0) and (x1, y1).

gw.drawPolarLine(x0, y0, r, theta)
Draws a line r pixels long in direction theta from (x0, y0).  To make chaining line 
segments easier, this function returns the ending coordinates as a GPoint. 

gw.getWidth()
Returns the width of the graphics window.

gw.getHeight()
Returns the height of the graphics window.

Many more functions exist in the gwindow.h and gobjects.h 
interfaces.  The full documentation is available on the web site.
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More Trees

● What if you change the amount of branching?

● What if you make the lines thicker?

● What if you allow the tree to keep growing after it 
branches?

● What if you color the branches and leaves differently?

● What if you try to space the branches apart more 
realistically?

● Stanford Dryad program uses a combination of 
recursion, machine learning, and human feedback to 
design aesthetically pleasing trees.

● Check it out at http://dryad.stanford.edu/

http://dryad.stanford.edu/


An Amazing Website

http://recursivedrawing.com/

http://recursivedrawing.com/


Exhaustive Recursion



Generating All Possibilities

● Commonly, you will need to generate all 
objects matching some criteria.
● Word Ladders: Generate all words that differ 

by exactly one letter.

● Often, structures can be generated 
iteratively.

● In many cases, however, it is best to 
think about generating all options 
recursively.



Subsets

● Given set S, a subset of S is a set formed by 
choosing some number of elements from S.

● Examples:
● {0, 1, 2} is a subset of {0, 1, 2, 3, 4, 5}
● {dikdik, ibex} is a subset of {dikdik, ibex}
● { A, G, C, T } is a subset of { A, B, C, D, …, Z }
● { } ⊆ {a, b, c}
● { } ⊆ { }



Generating Subsets

● Many important problems in computer 
science can be solved by listing all the 
subsets of a set S and finding the “best” one 
out of every option.

● Example:
● You have a collection of sensors on an 

autonomous vehicle, each of which has data 
coming in.

● Which subset of the sensors do you choose to 
listen to, given that each takes a different 
amount of time to read?



Generating Subsets
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Generating Subsets

● Base Case:
● The only subset of the empty set is the empty 

set.

● Recursive Step:
● Fix some element x of the set.
● Generate all subsets of the set formed by 

removing x from the main set.
● These subsets are subsets of the original set.
● All of the sets formed by adding x into those 

subsets are subsets of the original set.



Tracing the Recursion
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Analyzing Our Function

● How many subsets are there of a set with 
n elements?

● We can make a subset by choosing, for 
each element, whether to include it in 
the subset or exclude it from the subset.

● We make n choices with 2 options for 
each choice, so there are 2n possible 
subsets.

● The returned collection of sets will use 
about 2n memory.



A Quick Calculation

● On my computer, an int is four bytes 
(4 = 22).

● My computer has about 4GB of memory 
(about 232 bytes).

● If we need 2n space to hold the return 
value, what is the largest n we can pick 
without blowing up my computer 
(again)?

● Answer: n = 30.



Reducing Memory Usage

● In many cases, we need to perform some 
operation on each subset, but don't need 
to actually store those subsets.

● Idea: Generate each subset, process it, 
and then discard it.

● Question: How do we do this?



A Decision Tree

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}



A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope!                       Yep!

Nope!            

Nope!            

Nope!            Nope!            Nope!                       Yep!            Yep!            Yep!

            Yep!             Yep!Nope!            

            Yep!



A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope!                       Yep!

Nope!            

Nope!            

Nope!            Nope!            Nope!                       Yep!            Yep!            Yep!

            Yep!             Yep!Nope!            

            Yep!



A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope!                       Yep!

Nope!            

Nope!            

Nope!            Nope!            Nope!                       Yep!            Yep!            Yep!

            Yep!             Yep!Nope!            

            Yep!



Recursively Exploring Options

● Our recursive function needs to keep track of
● What choices we've made so far, and
● What choices we still need to make.

● Base Case:
● If there are no choices left, output the set we 

formed from the choices we made.

● Recursive Step:
● Find the next choice to make.
● For each possible choice, recursively explore all 

options formed from making that choice.



Next Time

● Exhaustive Recursion II
● What other structures can we generate?
● How do we do so efficiently?

● Recursive Backtracking
● How do you find a needle in a haystack?
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