

Thinking Recursively
Part II

Friday Four Square!
Today at 4:15PM, Outside Gates

Recursive Problem-Solving

if (problem is sufficiently simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem up into one or more smaller
 problems with the same structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall solution.

 Return the overall solution.

}

A fractal image is an image that is defined
in terms of smaller versions of itself.

Fractal Trees

● We can generate a
fractal tree as
follows:
● Grow in some

direction for a
period of time.

● Then, split and
grow smaller trees
outward at some
angle.

Methods in the Graphics Library

GWindow gw(width, height)
Creates a graphics window with the specified dimensions.

gw.drawLine(x0, y0, x1, y1)
Draws a line connecting the points (x0, y0) and (x1, y1).

gw.drawPolarLine(x0, y0, r, theta)
Draws a line r pixels long in direction theta from (x0, y0). To make chaining line
segments easier, this function returns the ending coordinates as a GPoint.

gw.getWidth()
Returns the width of the graphics window.

gw.getHeight()
Returns the height of the graphics window.

Many more functions exist in the gwindow.h and gobjects.h
interfaces. The full documentation is available on the web site.

Slide by Eric Roberts

More Trees

● What if you change the amount of branching?

● What if you make the lines thicker?

● What if you allow the tree to keep growing after it
branches?

● What if you color the branches and leaves differently?

● What if you try to space the branches apart more
realistically?

● Stanford Dryad program uses a combination of
recursion, machine learning, and human feedback to
design aesthetically pleasing trees.

● Check it out at http://dryad.stanford.edu/

http://dryad.stanford.edu/

An Amazing Website

http://recursivedrawing.com/

http://recursivedrawing.com/

Exhaustive Recursion

Generating All Possibilities

● Commonly, you will need to generate all
objects matching some criteria.
● Word Ladders: Generate all words that differ

by exactly one letter.

● Often, structures can be generated
iteratively.

● In many cases, however, it is best to
think about generating all options
recursively.

Subsets

● Given set S, a subset of S is a set formed by
choosing some number of elements from S.

● Examples:
● {0, 1, 2} is a subset of {0, 1, 2, 3, 4, 5}
● {dikdik, ibex} is a subset of {dikdik, ibex}
● { A, G, C, T } is a subset of { A, B, C, D, …, Z }
● { } ⊆ {a, b, c}
● { } ⊆ { }

Generating Subsets

● Many important problems in computer
science can be solved by listing all the
subsets of a set S and finding the “best” one
out of every option.

● Example:
● You have a collection of sensors on an

autonomous vehicle, each of which has data
coming in.

● Which subset of the sensors do you choose to
listen to, given that each takes a different
amount of time to read?

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

0 1 2, ,

2

1

1 2,

0

0 2,

0 1,

0 1 2, ,

Generating Subsets

● Base Case:
● The only subset of the empty set is the empty

set.

● Recursive Step:
● Fix some element x of the set.
● Generate all subsets of the set formed by

removing x from the main set.
● These subsets are subsets of the original set.
● All of the sets formed by adding x into those

subsets are subsets of the original set.

Tracing the Recursion

Tracing the Recursion

{ A, H, I }

Tracing the Recursion

{ A, H, I }

{ H, I }

Tracing the Recursion

{ A, H, I }

{ H, I }

{ I }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

{I}, { }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{ }

{I}, { }

{H, I}, {H}, {I}, { }

Tracing the Recursion

{ A, H, I }

{ }

{ H, I }

{ I }

{A, H, I}, {A, H}, {A, I}, {A}
{H, I}, {H}, {I}, { }

{ }

{I}, { }

{H, I}, {H}, {I}, { }

Analyzing Our Function

● How many subsets are there of a set with
n elements?

● We can make a subset by choosing, for
each element, whether to include it in
the subset or exclude it from the subset.

● We make n choices with 2 options for
each choice, so there are 2n possible
subsets.

● The returned collection of sets will use
about 2n memory.

A Quick Calculation

● On my computer, an int is four bytes
(4 = 22).

● My computer has about 4GB of memory
(about 232 bytes).

● If we need 2n space to hold the return
value, what is the largest n we can pick
without blowing up my computer
(again)?

● Answer: n = 30.

Reducing Memory Usage

● In many cases, we need to perform some
operation on each subset, but don't need
to actually store those subsets.

● Idea: Generate each subset, process it,
and then discard it.

● Question: How do we do this?

A Decision Tree

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope! Yep!

Nope!

Nope!

Nope! Nope! Nope! Yep! Yep! Yep!

 Yep! Yep!Nope!

 Yep!

A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope! Yep!

Nope!

Nope!

Nope! Nope! Nope! Yep! Yep! Yep!

 Yep! Yep!Nope!

 Yep!

A Decision Tree

A?

I?

{} {I} {H} {H, I} {A} {A, I} {A, H} {A,H,I}

I? I? I?

H? H?

Nope! Yep!

Nope!

Nope!

Nope! Nope! Nope! Yep! Yep! Yep!

 Yep! Yep!Nope!

 Yep!

Recursively Exploring Options

● Our recursive function needs to keep track of
● What choices we've made so far, and
● What choices we still need to make.

● Base Case:
● If there are no choices left, output the set we

formed from the choices we made.

● Recursive Step:
● Find the next choice to make.
● For each possible choice, recursively explore all

options formed from making that choice.

Next Time

● Exhaustive Recursion II
● What other structures can we generate?
● How do we do so efficiently?

● Recursive Backtracking
● How do you find a needle in a haystack?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Methods in the Graphics Library
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

