
  

Collections, Part Two



  

Announcements

● Sections announced over email and room locations 
are now posted.

● Not in a section?  Sign up for an open section at

http://cs198.stanford.edu/section  

● Mac Users: We now have two versions of the 
starter files:

● One version is purely for 10.7
● The other version is for 10.6 and 10.8.

● When submitting, make sure to submit your .cpp 
source files, not the Xcode or Visual Studio project 
files!

http://cs198.stanford.edu/section


  

Announcements

● Casual dinner for women studying CS 
tonight at 5:00PM at the Gates Patio.

● Everyone is welcome!
● RSVP through link sent out last Friday, or 

by visiting

http://bit.ly/casualcsdinner

http://bit.ly/casualcsdinner


  

she++



  

Vector



  

Vector

● The Vector is a collection class 
representing a list of things.
● Similar to Java's ArrayList type.

● Probably the single most commonly used 
collection type in all programming.



  

Example: Cell Tower Purchasing



  

Buying Cell Towers
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Given the populations of each city, what is 
the largest number of people you can 

provide service to?



  

Pass-by-Reference and Objects

● Recall: In C++, all parameters are 
passed by value unless specified 
otherwise.

● When using container types (Stack, 
Vector, etc.) it is often useful to use 
pass-by-reference for efficiency reasons.
● Takes a long time to make a copy of a large 

collection!
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Source: Google Maps
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Two-Dimensional Data

● The Grid type can be used to store 
two-dimensional data.
● e.g. matrices, scrabble boards, etc.

● Can construct a grid of a certain size by 
writing

Grid<Type> g(numRows, numCols); 
● Can access individual elements by writing

g[rows][cols]



  

Next Time

● Map
● A collection for storing associations between 

elements.
● Set

● A collection for storing an unordered group 
of elements.

● Lexicon
● A special kind of Set.
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