

Collections, Part Two

Announcements

● Sections announced over email and room locations
are now posted.

● Not in a section? Sign up for an open section at

http://cs198.stanford.edu/section

● Mac Users: We now have two versions of the
starter files:

● One version is purely for 10.7
● The other version is for 10.6 and 10.8.

● When submitting, make sure to submit your .cpp
source files, not the Xcode or Visual Studio project
files!

http://cs198.stanford.edu/section

Announcements

● Casual dinner for women studying CS
tonight at 5:00PM at the Gates Patio.

● Everyone is welcome!
● RSVP through link sent out last Friday, or

by visiting

http://bit.ly/casualcsdinner

http://bit.ly/casualcsdinner

she++

Vector

Vector

● The Vector is a collection class
representing a list of things.
● Similar to Java's ArrayList type.

● Probably the single most commonly used
collection type in all programming.

Example: Cell Tower Purchasing

Buying Cell Towers

137 42 95 272 52

Buying Cell Towers

137 42 95 272 52

Buying Cell Towers

14 22 13 25 30 11 9

Buying Cell Towers

14 22 13 25 30 11 9

Buying Cell Towers

99 100 99

Buying Cell Towers

99 100 99

Given the populations of each city, what is
the largest number of people you can

provide service to?

Pass-by-Reference and Objects

● Recall: In C++, all parameters are
passed by value unless specified
otherwise.

● When using container types (Stack,
Vector, etc.) it is often useful to use
pass-by-reference for efficiency reasons.
● Takes a long time to make a copy of a large

collection!

14 22 13 25 30 11 9

14 22 13 25 30 11 9

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

Maximize what's left in here.

14 22 13

How the Recursion Works

14 22 13

22 13

How the Recursion Works

14 22 13

22 13

13

How the Recursion Works

14 22 13

22 13

13

How the Recursion Works

Best is
13

14 22 13

22 13

13

How the Recursion Works

+22

Best is
13

14 22 13

22 13

13

How the Recursion Works

+22

Best is
13

Best is
0

14 22 13

22 13

13

How the Recursion Works

+22

Best is
13

Best is
0

Best is
22

14 22 13

22 13

13

13

How the Recursion Works

+14

+22

Best is
13

Best is
0

Best is
22

14 22 13

22 13

13

13

How the Recursion Works

+14

+22

Best is
13

Best is
0

Best is
22

Best is
13

14 22 13

22 13

13

13

How the Recursion Works

+14

+22

Best is
13

Best is
0

Best is
22

Best is
13

Best is
27

How the Recursion Works

20 25 23 17

25 23 17

23 17

17

17

23 17

17

Best:
17

Best:
0

Best:
0

Best:
17

Best:
17

+25 +23

+20

Best:
23

Best:
32

Best:
23

Best:
43

+23

Source: Google Maps

Grid

Two-Dimensional Data

● The Grid type can be used to store
two-dimensional data.
● e.g. matrices, scrabble boards, etc.

● Can construct a grid of a certain size by
writing

Grid<Type> g(numRows, numCols);
● Can access individual elements by writing

g[rows][cols]

Next Time

● Map
● A collection for storing associations between

elements.
● Set

● A collection for storing an unordered group
of elements.

● Lexicon
● A special kind of Set.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

