

Collections, Part One

Announcements

● Assignment 1 (Welcome to C++!) due Monday, April
15 at 2:15PM.
● Warm up with C++!
● Play around with strings and recursion!

● Section assignments will be announced tomorrow. If
you have not signed up for a section, visit the signup
link tomorrow at 5PM:

http://cs198.stanford.edu/section
● Mac users – if you're getting an error about

“minimum deployment target,” we are looking into
this and should get a fix posted to the course website
soon. Our sincerest apologies!

http://cs198.stanford.edu/section

Announcements

● Casual dinner for women studying CS
this Wednesday, April 10 at 5:00PM at
the Gates Patio.

● Everyone is welcome!
● RSVP through link sent out last Friday, or

by visiting

http://bit.ly/casualcsdinner

http://bit.ly/casualcsdinner

One last C++ detail...

Reference Parameters

● In C++, all parameters are passed by value
unless specified otherwise.
● The parameter is initialized to a copy of the

argument.

● You can pass a parameter by reference by
annotating it with the & sign:

void removeSpaces(string& argument);

void reverse(string& argument);

Yay! Now on to new things!

Organizing Data

● In order to model and solve problems, we
have to have a way of representing
structured data.

● We need ways of representing concepts
like
● sequences of elements,
● sets of elements,
● associations between elements,
● etc.

Collections

● A collection class (or container class) is
a data type used to store and organize data
in some form.

● Understanding and using collection classes
is critical to good software engineering.

● This week is dedicated to exploring
different collections and how to harness
them appropriately.

● We'll discuss efficiency issues and
implementations later on.

Stack

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

137

42

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

42

137

271

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

271

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

271

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

42

137

0

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

0

42

137

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Interesting
exercise: code

this up!

Interesting
exercise: code

this up!

Application: Evaluating Expressions

Evaluating Expressions

● Evaluating expressions is much trickier
than it might seem due to issues of
precedence.
● 1 + 3 * 5 – 7 = 9
● 4 / 2 + 2 = 4
● 17 % 6 % 3 = 2

● How do we evaluate an expression?

The Challenge

1 3 7 + 4 2 × 2 7 1

Evaluating Expressions

● Two separate concerns in evaluating
expressions:
● Scanning the string and breaking it apart

into its constituent components (tokens).
● Parsing the tokens to determine what

expression is encoded.

● For now, let's assume we have a scanner.
How might we handle parsing?

The Shunting-Yard Algorithm

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+ 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+ 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+ 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2
+

3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3

* 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

* 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

* 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

* 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

* 5 - 6 / 2

Multiplication has higher
precedence than addition,
so we will postpone the
addition until after we've
done the multiplication.

Multiplication has higher
precedence than addition,
so we will postpone the
addition until after we've
done the multiplication.

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*

5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 *

5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 *

5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 *

5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*5

- 6 / 2

Subtraction has lower
precedence than

multiplication, so we need
to evaluate the multiply
before the subtract.

Subtraction has lower
precedence than

multiplication, so we need
to evaluate the multiply
before the subtract.

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3
*5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

3 * 5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

15

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15Subtraction has equal
precedence to addition.

Since addition is
left-associative, we

evaluate the add before
the subtract.

Subtraction has equal
precedence to addition.

Since addition is
left-associative, we

evaluate the add before
the subtract.

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17
-

6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6

/ 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/ 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/ 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17
-6
/

2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 /

2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 /

2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 /

2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/2Now that we've read all
the tokens, we can finish

evaluating all the
expressions.

Now that we've read all
the tokens, we can finish

evaluating all the
expressions.

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-

6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-

3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 - 3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

14

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

14

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

14

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

14

The result is now
on top of the
operands stack.

The result is now
on top of the
operands stack.

The Shunting-Yard Algorithm

● Maintain a stack of operators and a stack of operands.

● For each token:
● If it's a number, push it onto the operand stack.
● If it's an operator:

– Keep evaluating operands until the current operator has higher
precedence than the most recent operator.

– Push the operator onto the operator stack.

● Once all input is done, keep evaluating operators until
no operators remain.

● The value on the operand stack is the overall result.

TokenScanner

● The TokenScanner class can be used to break apart a string into
smaller pieces.

● Construct a TokenScanner to piece apart a string as follows:

TokenScanner scanner(str);
● Configure options (ignore comments, ignore spaces, add

operators, etc.)
● Use the following loop to read tokens one at a time:

 while (scanner.hasMoreTokens()) {

 string token = scanner.nextToken();

 /* … process token … */

 }
● Check the documentation for more details; there are some really

cool tricks you can do with the TokenScanner!

Extensions to Shunting-Yard

● How might you update the shunting-yard
algorithm to:
● Handle/report syntax errors in the input?
● Support parentheses?
● Support functions like sin, cos, and tan?
● Support variables?

● For more information on scanning and
parsing, take CS124 (From Languages to
Information) or CS143 (Compilers).

Next Time

● Vector
● A standard collection for sequences.

● Grid
● A standard collection for 2D data.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154

