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Announcements

● Assignment 1 (Welcome to C++!) due Monday, April 
15 at 2:15PM.
● Warm up with C++!
● Play around with strings and recursion!

● Section assignments will be announced tomorrow.  If 
you have not signed up for a section, visit the signup 
link tomorrow at 5PM:

http://cs198.stanford.edu/section
● Mac users – if you're getting an error about 

“minimum deployment target,” we are looking into 
this and should get a fix posted to the course website 
soon.  Our sincerest apologies!

http://cs198.stanford.edu/section


  

Announcements

● Casual dinner for women studying CS 
this Wednesday, April 10 at 5:00PM at 
the Gates Patio.

● Everyone is welcome!
● RSVP through link sent out last Friday, or 

by visiting

http://bit.ly/casualcsdinner

http://bit.ly/casualcsdinner


  

One last C++ detail...



  

Reference Parameters

● In C++, all parameters are passed by value 
unless specified otherwise.
● The parameter is initialized to a copy of the 

argument.

● You can pass a parameter by reference by 
annotating it with the & sign:

void removeSpaces(string& argument);

void reverse(string& argument);



  

Yay!  Now on to new things!



  

Organizing Data

● In order to model and solve problems, we 
have to have a way of representing 
structured data.

● We need ways of representing concepts 
like
● sequences of elements,
● sets of elements,
● associations between elements,
● etc.



  

Collections

● A collection class (or container class) is 
a data type used to store and organize data 
in some form.

● Understanding and using collection classes 
is critical to good software engineering.

● This week is dedicated to exploring 
different collections and how to harness 
them appropriately.

● We'll discuss efficiency issues and 
implementations later on.



  

Stack



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top 
of the stack or popped from 
the top of the stack.

● Only the top of the stack can be 
accessed; no other objects in 
the stack are visible.

● Example: Function calls
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  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
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Application: Evaluating Expressions



  

Evaluating Expressions

● Evaluating expressions is much trickier 
than it might seem due to issues of 
precedence.
● 1 + 3 * 5 – 7 = 9
● 4 / 2 + 2 = 4
● 17 % 6 % 3 = 2

● How do we evaluate an expression?



  

The Challenge

1 3 7  +  4 2  × 2 7 1



  

Evaluating Expressions

● Two separate concerns in evaluating 
expressions:
● Scanning the string and breaking it apart 

into its constituent components (tokens).
● Parsing the tokens to determine what 

expression is encoded.

● For now, let's assume we have a scanner.  
How might we handle parsing?
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The Shunting-Yard Algorithm

● Maintain a stack of operators and a stack of operands.

● For each token:
● If it's a number, push it onto the operand stack.
● If it's an operator:

– Keep evaluating operands until the current operator has higher 
precedence than the most recent operator.

– Push the operator onto the operator stack.

● Once all input is done, keep evaluating operators until 
no operators remain.

● The value on the operand stack is the overall result.



  

TokenScanner

● The TokenScanner class can be used to break apart a string into 
smaller pieces.

● Construct a TokenScanner to piece apart a string as follows:

TokenScanner scanner(str); 
● Configure options (ignore comments, ignore spaces, add 

operators, etc.)
● Use the following loop to read tokens one at a time:

     while (scanner.hasMoreTokens()) {

         string token = scanner.nextToken();

         /* … process token … */

     }
● Check the documentation for more details; there are some really 

cool tricks you can do with the TokenScanner!



  

Extensions to Shunting-Yard

● How might you update the shunting-yard 
algorithm to:
● Handle/report syntax errors in the input?
● Support parentheses?
● Support functions like sin, cos, and tan?
● Support variables?

● For more information on scanning and 
parsing, take CS124 (From Languages to 
Information) or CS143 (Compilers).



  

Next Time

● Vector
● A standard collection for sequences.

● Grid
● A standard collection for 2D data.
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