
Assignment 6: Huffman Encoding YEAH

Ashwin Siripurapu

May 30, 2013

• Q. What’s ext_char?

A. Recall that nodes in the Huffman tree can have three character

values: they can either contain a true character, the special value
NOT_A_CHAR (containd by all interior nodes in the tree), or the spe-
cial value PSEUDO_EOF (contained by exactly one of the leaf nodes and
used to signal the end of the file).

We can’t contain these three types of values in the regular old char

type, because char itself can only contain the regular characters, and
not the two special values. Therefore, we created the extended charac-
ter type ext_char which is big enough to contain all these values.

• Again, you have broad freedom to implement the interface that we
specify for you. Think hard about any design choices that you have to
make.

One specific design choice that will be of paramount importance is this:
when you’ve finished building the encoding tree to compress the input
file, you’ll be ready to compress the input file character by character.
But, how will you find the encoding that corresponds to a given char-
acter of input? One way to do this is to run a depth– or breadth–first
search through the entire tree to find the character you want, and keep
track of the sequence of left/right moves that led to it. Another way is
to make one exhaustive search through the entire tree and build up a
map that goes from each character to its compressed bit pattern. What
are the tradeoffs involved? Which way is better?

• The first thing you do when compressing the file is read through it to
figure out the frequency counts for each character. After doing this,

1



the input file pointer will be at the very end of the file (duh). But then,
after you build up the tree, you need to go back to the beginning of
the file to start writing out the compressed version of each character in
the input file.

To go back to the beginning of an ibstream object (for our purposes,
a file), you can use the rewind method, like so:

ifbstream infile(filename.c_str()); // ifbstream is a subclass of ibstream

// read through the file

process(infile);

// now infile is at the end of the file

infile.rewind();

/* now infile is at the beginning of the file again

ready for a second pass! */

Note: an earlier version of these notes told you that the istream

class supports member function rewind. This is incorrect! Only the
ibstream class has the rewind method. You will have to take this into
account when rewinding your stream. Also note that ibstream is a
subclass of istream, so any method that takes an istream can accept
an ibstream object. Keep this in mind and rewinding should be a
snap.

2


