
Assignment 5: Priority Queue YEAH

Ashwin Siripurapu

May 21, 2013

• This is the first assignment where you are given rather broad freedom
to make your own design choices regarding the implementation of your
classes, provided that you implement the interfaces we provide using
the algorithms specified in the assignment handout.

Consequently, you should be thinking about design choices constantly.
Whenever you come to a point where you could sensibly implement a
particular feature in two or more different ways, stop and think about
the pros and cons of each way before proceeding.

For instance, we require that you implement a size method for each of
your priority queues. There are a couple reasonable ways to do this for
the linked list priority queues: you could maintain a member variable
that stores how many elements there are (as in the code for the Vector

class that we created in lecture), or you could loop through the linked
list (also as in lecture) and count up how many elements there are.

What are the pros and cons of each way? Think in terms of big–O
running time and space efficiency.

Which way (if either) is, on balance, better than the other for our
purposes?

Think about your design choices like this, and make sure you can defend
your answers.

1



• For the VectorPQueue, you should not be manually managing memory.
All memory management should be abstracted away to the underlying
Vector that stores the elements of your priority queue.

• For the linked list priority queues, be very, very cautious about two
things:

1. Memory management. Don’t forget to free memory that you no
longer need, and don’t use memory that you have already freed.

2. Edge cases. Think about all the special cases that could affect the
behavior of your code. What if the linked list is empty to begin
with? What if you are inserting or deleting from the head element
or the last element of the list? What if you are removing the only
remaining element in a list? The code you write should be robust
enough to deal with all these special cases.

• For the HeapPQueue, make sure you really understand how the algo-
rithm works before you dive into the code. Take a look at the picures
and convince yourself that if you start out with a valid binary heap
and then perform an insertion or a deletion using the bubble–up or
bubble–down procedures, you will subsequently end up with a valid
binary heap.

Also, you should not be implementing the binary heap data structure
the way we did the binary search tree we did in class, with a struct

node that has a left and a right pointer. Look over the handout and
see how to represent a binary heap using a raw array, which you will
manage and grow as necessary. By the way, if you’re curious, think
about how you might decide to shrink the array if you have a bunch of
unused allocated space ;)

2


