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Trailblazer Notes 
Dawson Zhou 

 
Trailblazer can be split up into three distinct parts: 
 
1) shortest path search with Dijkstra’s algorithm 
2) shortest path search with A* search 
3) maze creation with Kruskal’s algorithm 
 
While the first two parts are very closely related to one another, the third part is 
completely separate, and it makes sense to focus on that only once you have the first two 
parts working. 
 
 
Dijkstra’s Algorithm 
 
The pseudo-code provided in the assignment handout is really your friend here. Make 
sure you really understand what each step is doing. Look at the graph in the slides from 
Lecture 25 (starting at slide 66), and trace through the pseudo-code using that specific 
example. This will really help you solidify your understanding of what’s going on, as well 
as the data structures needed to make the algorithm work. 
 
Dijkstra’s algorithm is all about making our best guesses that we can about the shortest 
paths to various cells in the world, starting with the beginning cell. Along the way, we 
need to track certain information for each cell: have we visited this cell yet? Do we know 
for certain if we’ve found the shortest path to it? If not, what’s our best guess for the 
shortest path here? 
 
In order to answer those questions, we’ll need to store information that’s associated with 
each cell. As it turns out, each cell can also be described by its location (i.e. row and 
column). You may be tempted to change the Loc struct by adding data members – you 
should avoid changing Loc. Stylistically, it doesn’t make sense for a location structure to 
be packed with other context-specific information. Instead, if you want to package all of 
that data together, you should define your own struct. For example, let’s define a Node: 
 
    struct Node { 
        // data associated with a cell that matters to Dijkstra 
    }; 
 
If you’re reading the graphs chapter in the course reader, take note: you probably don’t 
want to use the Graph type provided by our libraries. Instantiating a Graph object would 
require defining Node and Arc types that are dynamically allocated connected to each 
other via pointers, and so on. It ends up creating an over-complicated solution. In 
Trailblazer, the graph is stored implicitly. If you’re looking at the node located at (2, 3), 
you don’t need to need to explicitly store which nodes are its neighbors. You know that 
they’re the eight nodes located at (1, 2), (1, 3), (1, 4), (2, 2), … etc. Look to your Boggle 
code for this part! 
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Since you’ll be dealing with (row, col) pairs a lot, if you decide to define an additional 
structure to hold information associated with cells, you’ll need a data structure to store 
all of that information. Ideally, you want to be able to look up that information given the 
row and column. This lends itself to either a map or a grid – think about which might 
make more sense, or be easier to code up. 
 
An important thing to make sure you understand is how the priority queue plays its role. 
At any point in time, the queue stores some number of cell locations (if you’ve been told 
that you should store vectors of locations in the priority queue, you have been 
misinformed!). The cells currently inside the queue represent ones that you’ve seen 
during your outward exploration from the starting point. Let’s suppose that one of those 
locations is called X. Since you’ve visited X, you have a guess for the shortest path from 
the start to X. However, you’re not certain yet that it’s actually the shortest path, 
because there might be another way to reach X which is even shorter. 
 
The only time you know that you’ve found the shortest path to a location is when you 
pull it out of the priority queue. At that point, you know for a fact that there’s no shorter 
path to X; if there were, you would have seen it earlier. That property is given to us by 
the fact that the priority queue always returns the element with the lowest weight. In 
this case, we’re using path costs as our weight, so the shortest paths come out first. 
 
 When we enqueue a location into the priority queue, we mark it yellow. We’ve 

visited it, but we don’t know if we’ve found the best path there quite yet. 
 When we dequeue a location from the priority queue, we mark it green. It’s the 

cheapest path in the queue, so we know we’ve found the best path there. 
 
When we’re exploring new nodes, we have to consider a few different possible scenarios. 
Suppose we just pulled location X from the priority queue. That means we know the 
cheapest path from start to X. Now, consider X’s neighbor Y. We know that Y is either: 
 
1) gray, which means we’ve never visited Y before. In that case, we now have a path 

from start to Y: the path from start to X, followed by a hop from X to Y. 
2) yellow, which means we’ve already seen Y and made a guess about the best path 

from start to Y. In that case, we want to see if we can beat that best path by going 
through X instead. 

3) green, which means we’ve already found the shortest path to Y, and there’s not 
going to be a shorter path. In that case, we can do absolutely nothing. 

 
This means that if Y is gray or yellow, we should calculate the cost of going from start to 
Y by going first from start to X, then hopping from X to Y. Our nifty Node structure from 
before should be able to remember the cost of going from start to X, and our cost 
function will tell us the cost of hopping from X to Y. If we sum these together, we have 
the cost of routing our path to Y through X. 
 
If Y was gray, then this path is our best bet, because we haven’t found any other paths to 
Y yet. If Y was yellow, then we already had a best guess for the shortest path from start 
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to Y. In that case, we should compare our path which routes through X and see if it’s 
even shorter. If it is, we need to update our best guess to involve X, and adjust the 
weight of the Y location in the priority queue accordingly. 
 
At some point, if we dequeue the end node and color it green, it means we’ve found the 
absolute shortest path from start to end. Then, we can quit searching and return an 
answer. The expected answer should be a path represented by a Vector of locations. In 
order to actually form that Vector using the algorithm just described, we’ll need to store 
a bit more additional information for each node. 
 
As of now, each node remembers the total cost of the shortest path from start to that 
node. However, to reconstruct the path itself, we need each node to know which location 
preceded it in the path. Luckily, that’s just something else we can store for each node! 
Suppose we just came from location X and we’re looking at its neighbor, location Y. 
Suppose further that we discover that the path from start to Y via X is the shortest path 
we’ve ever found to Y. In that case, we would update Y’s node to remember the cost of 
said shortest path. On top of that, we should also indicate that to get to Y along that 
path, we should find our way to X and hop from X to Y. 
 
X in turn remembers whichever location precedes it in the shortest path from start to X, 
and so on. By following these links back until we reach the start location, we can 
reconstruct the shortest path from start to Y. 
 
As a hint, we’ve used the term “parent pointers” to refer to the preceding cell. However, 
you don’t need to store them as actual pointers; every node just needs to remember the 
(row, col) location of the preceding node. Your life will be a lot easier if you avoid 
pointer manipulation here. 
 
 
A* Search 
 
Although A* search provides a much smarter searching algorithm, it barely requires any 
change at all to Dijkstra’s algorithm. The idea with A* is that we can try exploring paths 
that are roughly in the general direction of the end location. The way we specify that is 
by changing the order of the cells dequeued from the priority queue, since we continue 
exploring from those cells. 
 
You’ll notice in the A* pseudo-code that the only place in which it differs from Dijkstra’s 
algorithm is when you’re adding something to the priority queue or when you’re 
adjusting the weight of something already inside the priority queue. In both of these 
cases, instead of making the weight of a path its total cost, we set it to be the total cost 
plus an estimate of how much longer it might take to reach the end (given by the 
heuristic function). 
 
In summary: make sure the heuristic is only used to calculate priority queue weights. 
 
 



- 4 - 
 

Kruskal’s Algorithm 
 
Suppose we have an open world with no walls. From every cell, we can visit each of its 
four neighbors in the north, south, east, and west directions. Technically, this is a maze. 
A really bad one, but a maze nonetheless. We can construct a more interesting maze by 
introducing walls in between adjacent cells, making it impossible to travel directly 
between the two cells. 
 
Kruskal’s algorithm works by treating each cell in the world as a node in a graph and 
including as few edges as possible while still ensuring that every node can reach every 
other node. The graph produced, sometimes referred to as a minimal spanning tree, can 
be converted into a maze using the above description. An edge allows traveling between 
the two nodes directly, representing open space in the maze. If an edge isn’t present, the 
maze has a wall there which prevents crossing from one cell to the other. 
 
To generate the minimal spanning tree, we start with every location sitting in isolation 
(i.e. no edges). Then, we consider every edge in some random order. Every time we see 
an edge, we can ask if the two nodes on either side are already connected (potentially 
indirectly). If they are, then we should ignore this edge, since it’s redundant. If they 
aren’t, then the edge should be used. From that point on, those two nodes should be 
considered connected. 
 
If we repeat this process until every node is connected, then we have a graph where any 
node can reach any other node, but not a single edge is redundant. That represents a 
maze, and we’re done. 
 
The trickiest thing about Kruskal’s algorithm is representing connectivity between 
nodes. We can think of groups of nodes which are connected to each other as clusters. 
Suppose X belongs to the cluster consisting of X, Y, and Z, and B belongs to the cluster 
consisting of A, B, and C. Consider an edge which could connect X and B together. Since 
X and B are not in the same cluster, the edge is not redundant and therefore should be 
included. By including it, we decide to merge those clusters into one. Now, X is 
connected to Y and Z as before, but also A, B, and C. On top of that, even though Z was 
not directly involved in the selection of that particular edge, Z should now know that it’s 
connected to A, B, and C, since it can now reach them via the edge between X and B. 
 
It’s up to you how you represent clusters, but keep in mind what you want to do with 
them: 
 
 You should be able to find the cluster that X is associated with. Likewise for B. 
 You should be able to ask if X’s cluster and B’s cluster are the same or different. 
 You should be able to merge the two clusters so that every node in the larger 

combined cluster knows that it is part of a new family. 
 
 
Good luck on the assignment! As always, feel free to email Keith or myself 
with any questions. 


