

Parallel Computing

Announcements

● Midterm has been graded; will be
distributed after class along with
solutions.

● SCPD students: Midterms have been sent
to the SCPD office and should be sent
back to you soon.

Announcements

● Assignment 6 due right now.

● Assignment 7 (Pathfinder) out, due next
Tuesday at 11:30AM.

● Play around with graphs and graph
algorithms!

● Learn how to interface with library code.
● No late submissions will be considered.

This is as late as we're allowed to have the
assignment due.

Why Algorithms and
Data Structures Matter

Making Things Faster

● Choose better algorithms and data structures.

● Dropping from O(n2) to O(n log n) for large data sets will
make your programs faster.

● Optimize your code.

● Try to reduce the constant factor in the big-O notation.

● Not recommended unless all else fails.

● Get a better computer.

● Having more memory and processing power can
improve performance.

● New option: Use parallelism.

How Your Programs Run

Threads of Execution

● When running a program, that program gets a
thread of execution (or thread).

● Each thread runs through code as normal.

● A program can have multiple threads running at
the same time, each of which performs different
tasks.

● A program that uses multiple threads is called
multithreaded; writing a multithreaded program
or algorithm is called multithreading.

Threads in C++

● The newest version of C++ (C++11) has
libraries that support threading.

● To create a thread:
● Write the function that you want to execute.
● Construct an object of type thread to run

that function.
– Need header <thread> for this.

● That function will run in parallel alongside
the original program.

How Do Threads Work?

● Preemption: The computer runs one thread for a
short time, then runs the next thread for a short time,
etc.

● Gives the illusion of everything running concurrently,
though only one thread runs at a time.

● Changing which thread runs is called a context switch.

● Parallelism: The computer has hardware that lets it
run multiple threads at the same time.

● Multiple different tasks really are running at the same
time.

● Not mutually exclusive; can do both (most computers do).

● There are other options, but we'll focus on these today.

Indeterminacy

● The order in which different threads
execute cannot be controlled.

● Execution order is indeterminate.
● Running the same multithreaded

program many times can result in
different outcomes each time.

Joining a Thread

● When writing a program with multiple
threads, we sometimes have to wait for a
thread to finish.

● One thread joins a second thread if it
waits for the second thread to terminate
before continuing.

● In C++, you can join a thread with the
.join() member function:

thread.join();

Getting Faster with Threads

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

4

4

4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

4

4

4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

4

4

4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

4

4

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

4

13

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

16

13

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

Parallel Merge Sort

● Idea: Parallelize merge sort to sort numbers
even faster than before!

● Same algorithm as before, but with multiple
threads:
● Create one thread for each half of the array.
● Have each thread sort its half independently.
● Wait for those threads to finish.
● Merge the subarrays back together.

● Assuming we have multiple cores on the
machine, this ends up being much faster.

Let's Code it Up!

What Went Wrong?

Resource Limitations

● Like all resources on the computer
(memory, disk space, power, etc.), the
number of threads is limited.

● We must limit how many threads we use.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

16

13

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

16

13

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

16

13

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12

16

13

13

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

Time

Time

Time

Time

Time

Time

The Hardware Limit

● Multithreading decreases the time
required to finish sorting, but doesn't
decrease the total work required.

● Once all cores are working, further
subdividing the task does not give any
performance increase.

● Launching and joining threads adds extra
work; too much subdivision can cause a
decrease in performance.

Race Conditions

Race Condition

● A race condition (or data race) is an
error in a program where the outcome of
the program differs based on the timing
of the threads.

● In our code, if multiple threads all read
isSpartacus as true before the first
thread to read it sets it to false, every
thread thinks it's Spartacus.

Having Threads Coordinate

Mutexes

● A mutex (from mutual exclusion) is a variable
designed to let threads coordinate with one
another.

● A thread can try to lock the mutex.

● If the mutex is unlocked, then the thread
locks the mutex and continues as usual until
it unlocks it.

● If the mutex is already locked, the thread
pauses until the mutex is unlocked, then
locks the mutex.

Threads are Hard

● Coordinating multiple threads can be
extremely difficult.

● Take CS110, CS140, or CS149 on details
on how to do this.

Getting Faster with Threads

Downloading Wikipedia

Downloading Wikipedia

● You can think of downloading all of
Wikipedia as a graph search problem.

● Given some set of starting articles, do a
DFS or BFS of the Wikipedia graph one
page at a time.

● How fast is this?

Network Latency

Network Latency
Ask for initial

page

Ask for initial
page

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Ask for next
page

Ask for next
page

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Ask for next
page

Ask for next
page

Get response
back

Get response
back

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Ask for next
page

Ask for next
page

Get response
back

Get response
back

Ask for next
page

Ask for next
page

Network Latency

Network Latency
Ask for initial

page

Ask for initial
page

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Ask for as many
pages as you

know of

Ask for as many
pages as you

know of

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Ask for as many
pages as you

know of

Ask for as many
pages as you

know of

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Ask for as many
pages as you

know of

Ask for as many
pages as you

know of

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Ask for as many
pages as you

know of

Ask for as many
pages as you

know of

Network Latency
Ask for initial

page

Ask for initial
page

Get response
back

Get response
back

Ask for as many
pages as you

know of

Ask for as many
pages as you

know of

What's Happening?

● Network operations are called I/O-
bound operations because most of the
work done is waiting for I/O operations,
not computation.
● Those tasks are called CPU-bound.

● Having a huge number of threads
improves efficiency because the
computer is always working while
waiting for the network.

A Parallelism Sampler

GPU Processing

CPUs and GPUs

● A CPU (central processing unit) is the
actual hardware that runs your
programs.

● A GPU (graphics processing unit) is a
separate piece of hardware for displaying
images on the screen.

CPUs versus GPUs

● A typical CPU has hardware to run
between 1 – 8 threads at a time.
● Each thread can do whatever it wants

independently of the others.

● A typical GPU can run hundreds or
thousands of threads at a time.
● Each thread executes the same code as all

the others, but processes different data.

GPU Parallelism

● GPUs can be used
to parallelize
mathematically
intense tasks.

● Leads to enormous
speedups.

Taking It Further...

Distributing Computing

● A distributed system is a system of
computers that all work together to solve
some large problem.

● Similar to threads – each computer
works in parallel with the rest.

● Different from threads – each computer
can only access its own memory.

Looking Further

● Interested in parallelism?

● Writing Parallel Code:
● CS110
● CS149

● Writing Distributed Systems:
● CS244B

● Implementing Threads:
● CS140
● CS240

Next Time

Where to Go from Here

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

