
  

Parallel Computing



  

Announcements

● Midterm has been graded; will be 
distributed after class along with 
solutions.

● SCPD students: Midterms have been sent 
to the SCPD office and should be sent 
back to you soon.



  

Announcements

● Assignment 6 due right now.

● Assignment 7 (Pathfinder) out, due next 
Tuesday at 11:30AM.

● Play around with graphs and graph 
algorithms!

● Learn how to interface with library code.
● No late submissions will be considered.  

This is as late as we're allowed to have the 
assignment due.



  

Why Algorithms and
Data Structures Matter



  

Making Things Faster

● Choose better algorithms and data structures.

● Dropping from O(n2) to O(n log n) for large data sets will 
make your programs faster.

● Optimize your code.

● Try to reduce the constant factor in the big-O notation.

● Not recommended unless all else fails.

● Get a better computer.

● Having more memory and processing power can 
improve performance.

● New option: Use parallelism.



  

How Your Programs Run



  

Threads of Execution

● When running a program, that program gets a 
thread of execution (or thread).

● Each thread runs through code as normal.

● A program can have multiple threads running at 
the same time, each of which performs different 
tasks.

● A program that uses multiple threads is called 
multithreaded; writing a multithreaded program 
or algorithm is called multithreading.



  

Threads in C++

● The newest version of C++ (C++11) has 
libraries that support threading.

● To create a thread:
● Write the function that you want to execute.
● Construct an object of type thread to run 

that function.
– Need header <thread> for this.

● That function will run in parallel alongside 
the original program.



  

How Do Threads Work?

● Preemption: The computer runs one thread for a 
short time, then runs the next thread for a short time, 
etc.

● Gives the illusion of everything running concurrently, 
though only one thread runs at a time.

● Changing which thread runs is called a context switch.

● Parallelism: The computer has hardware that lets it 
run multiple threads at the same time.

● Multiple different tasks really are running at the same 
time.

● Not mutually exclusive; can do both (most computers do).

● There are other options, but we'll focus on these today.



  

Indeterminacy

● The order in which different threads 
execute cannot be controlled.

● Execution order is indeterminate.
● Running the same multithreaded 

program many times can result in 
different outcomes each time.



  

Joining a Thread

● When writing a program with multiple 
threads, we sometimes have to wait for a 
thread to finish.

● One thread joins a second thread if it 
waits for the second thread to terminate 
before continuing.

● In C++, you can join a thread with the 
.join() member function:

thread.join(); 



  

Getting Faster with Threads
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Parallel Merge Sort

● Idea: Parallelize merge sort to sort numbers 
even faster than before!

● Same algorithm as before, but with multiple 
threads:
● Create one thread for each half of the array.
● Have each thread sort its half independently.
● Wait for those threads to finish.
● Merge the subarrays back together.

● Assuming we have multiple cores on the 
machine, this ends up being much faster.



  

Let's Code it Up!



  

What Went Wrong?



  

Resource Limitations

● Like all resources on the computer 
(memory, disk space, power, etc.), the 
number of threads is limited.

● We must limit how many threads we use.
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The Hardware Limit

● Multithreading decreases the time 
required to finish sorting, but doesn't 
decrease the total work required.

● Once all cores are working, further 
subdividing the task does not give any 
performance increase.

● Launching and joining threads adds extra 
work; too much subdivision can cause a 
decrease in performance.



  

Race Conditions



  

Race Condition

● A race condition (or data race) is an 
error in a program where the outcome of 
the program differs based on the timing 
of the threads.

● In our code, if multiple threads all read 
isSpartacus as true before the first 
thread to read it sets it to false, every 
thread thinks it's Spartacus.



  

Having Threads Coordinate



  

Mutexes

● A mutex (from mutual exclusion) is a variable 
designed to let threads coordinate with one 
another.

● A thread can try to lock the mutex.

● If the mutex is unlocked, then the thread 
locks the mutex and continues as usual until 
it unlocks it.

● If the mutex is already locked, the thread 
pauses until the mutex is unlocked, then 
locks the mutex.



  

Threads are Hard

● Coordinating multiple threads can be 
extremely difficult.

● Take CS110, CS140, or CS149 on details 
on how to do this.



  

Getting Faster with Threads



  

Downloading Wikipedia



  

Downloading Wikipedia

● You can think of downloading all of 
Wikipedia as a graph search problem.

● Given some set of starting articles, do a 
DFS or BFS of the Wikipedia graph one 
page at a time.

● How fast is this?



  

Network Latency
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What's Happening?

● Network operations are called I/O-
bound operations because most of the 
work done is waiting for I/O operations, 
not computation.
● Those tasks are called CPU-bound.

● Having a huge number of threads 
improves efficiency because the 
computer is always working while 
waiting for the network.



  

A Parallelism Sampler



  

GPU Processing



  

CPUs and GPUs

● A CPU (central processing unit) is the 
actual hardware that runs your 
programs.

● A GPU (graphics processing unit) is a 
separate piece of hardware for displaying 
images on the screen.



  

CPUs versus GPUs

● A typical CPU has hardware to run 
between 1 – 8 threads at a time.
● Each thread can do whatever it wants 

independently of the others.

● A typical GPU can run hundreds or 
thousands of threads at a time.
● Each thread executes the same code as all 

the others, but processes different data.



  

GPU Parallelism

● GPUs can be used 
to parallelize 
mathematically 
intense tasks.

● Leads to enormous 
speedups.



  

Taking It Further...



  



  

Distributing Computing

● A distributed system is a system of 
computers that all work together to solve 
some large problem.

● Similar to threads – each computer 
works in parallel with the rest.

● Different from threads – each computer 
can only access its own memory.



  



  

Looking Further

● Interested in parallelism?

● Writing Parallel Code:
● CS110
● CS149

● Writing Distributed Systems:
● CS244B

● Implementing Threads:
● CS140
● CS240



  

Next Time

Where to Go from Here
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