Graph Representations and Algorithms

Announcements

- Second midterm is tomorrow, Thursday, May 31.
- Exam location by last name:
 - A F: Go to Hewlett 201.
 - G Z: Go to Hewlett 200.
- Covers material up through and including Friday's lecture.
- Comprehensive, but primarily focuses on algorithmic efficiency and data structures.

A graph consists of a set of **nodes** connected by **edges**.

A graph consists of a set of **nodes** connected by **edges**.

A graph consists of a set of **nodes** connected by **edges**.

Representing Graphs

Map<Node*, Vector<Node*> >

Node* Vector<Node*>

We can represent a graph as a map from nodes to the list of nodes each node is connected to.

As The Crow Flies

Karel Goes Ice Skating

(This graph is called a Markov model)

2 • •

How would we represent this graph?

2

Keep on Truckin'

How would we represent this graph?

Representing Graphs

- Our initial approach of encoding a graph as a Map<Node*, Vector<Node*> > will not work if the edges have extra information associated with them.
- We will need to adopt a different strategy.

Nodes and Arcs

- **Idea One**: Have two separate types, one for nodes and one for arcs.
- Each node stores the set of arcs leaving that node, plus any extra information.
- Each arc stores the nodes it connects, plus any extra information.

```
struct Node {
                                  Node depends on
    string name;
                                       Arc ...
    Set<Arc*> arcs; ◄
    /* ... other data ... */
struct Arc {
    Node* start;
    Node* finish;
                                     ... and Arc
    /* ... other data ... */
                                  depends on Node!
struct SimpleGraph {
    Set<Node*> nodes;
    Set<Arc*> edges;
```

A Dependency Graph


```
struct Node;
struct Arc;
struct Node {
    string name;
    Set<Arc*> arcs;
    /* ... other data ... */
struct Arc {
    Node* start;
    Node* finish;
    /* ... other data ... */
struct SimpleGraph {
    Set<Node*> nodes;
    Set<Arc*> edges;
```

These are called forward declarations and tell C++ to expect struct definitions later.

They're similar to function prototypes.

Analyzing our Approach

Advantages:

- Allows arbitrary values to be stored in each node.
- Allows arbitrary values to be stored in each edge.

• Disadvantages:

- No encapsulation; can create arcs without adding them into nodes; can remove nodes without removing corresponding arcs, etc.
- No memory management: Need to explicitly free all nodes we've created.

A Graph Class

- We can use this strategy as the basis for building an encapsulated **Graph** class.
- Similar to the previous approach:
 - Stores nodes and edges separately.
 - Nodes store pointers to edges and vice-versa.
- Fewer drawbacks:
 - Automatically frees all memory for you.
 - Ensures that arcs and nodes are linked properly.

Using Graph

- The **Graph** class we provide you is a template; You must provide the node and arc types.
- For example:

```
Graph<Node, Arc> g1;
Graph<Node, LengthyArc> g2;
Graph<FlowchartNode, FlowchartArc> g3;
```

- Requirements:
 - The node type must have a string called name and a set of arc pointers called arcs.
 - The arc type must have two pointers to nodes named start and finish.

Graph Types for Distances

```
struct USCity;
struct USArc;
struct USCity {
    string name;
    Set<USArc*> arcs;
struct USArc {
    double distance;
    USCity* start;
    USCity* finish;
```

Graph Types for Robots

```
struct RobotLocation;
struct Transition;
struct RobotLocation {
    string name;
    Set<Transition*> arcs;
struct Transition {
    double probability;
    string event;
    RobotLocation* start;
    RobotLocation* finish;
```

Graph Algorithms

Depth-First Search

Breadth-First Search

BFS and DFS

- **Depth-first search** is good for determining whether or not there exists a path from *s* to *t*.
 - Uses a stack.
- Breadth-first search is good for determining the shortest path from s to t.
 - Uses a queue.
- What happens if the edges now have different lengths?

Shortest Paths

- You are given a directed graph where each edge has a nonnegative weight.
- Given a starting node *s*, find the shortest path (in terms of total weight) from *s* to each other node *t*.

One Possible Approach

- Split nodes into three groups:
 - Green nodes, where we know the length of the shortest path,
 - Yellow nodes, where we have a guess of the length of the shortest path, and
 - Red nodes, where we have no idea what the path length is.
- Repeatedly remove the lowest-cost yellow node, make it green, and update all connected nodes.

Dijkstra's Algorithm

- This algorithm for finding shortest paths is called Dijkstra's algorithm.
- One of the fastest algorithms for finding the shortest path from *s* to all other nodes in the graph.
- There are many ways to implement this algorithm.

(0) A

- (5) A→B
- (8) A→D

- $(5) A \rightarrow B$
- (8) A→D

- (0)A
- (5) A→B

- (0)A
- (5) A→B

- $(8) A \rightarrow D$
- $\begin{array}{c}
 (11) A \rightarrow B \rightarrow C \\
 (7) A \rightarrow B \rightarrow E
 \end{array}$

- (0)A
- (5) A→B

- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(11) A \rightarrow B \rightarrow C$

- (0)A
- (5) A→B

- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(11) A \rightarrow B \rightarrow C$

- (0)A
- (5) A→B (7) A→B→E

(11) A→B→C

- (0)A
- (5) A→B
- (7) A→B→E

- (8) A→D
- $(11) A \rightarrow B \rightarrow C$
- $(8) A \rightarrow B \rightarrow E \rightarrow F$ $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- (5) A→B
- (7) A→B→E

- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(11) A \rightarrow B \rightarrow C$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- (5) A→B
- (7) A→B→E

- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(11) A \rightarrow B \rightarrow C$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D

$$(8) A \rightarrow B \rightarrow E \rightarrow F$$

 $(11) A \rightarrow B \rightarrow C$ $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D

- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(11) A \rightarrow B \rightarrow C$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$
- $(9) A \rightarrow D \rightarrow G$ $(11) A \rightarrow D \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D

- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D

- (8) $A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$

- $(9) A \rightarrow D \rightarrow G$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$

$$(9) A \rightarrow D \rightarrow G$$

- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

$$(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$$

$$(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$

- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$

- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$

- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$

$$(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$$

- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$

- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(10) A \rightarrow D \rightarrow G \rightarrow H$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$

- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(10) A \rightarrow D \rightarrow G \rightarrow H$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$

$$(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$$

 $(11) A \rightarrow B \rightarrow C$

 $(11) A \rightarrow D \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$

$$(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$$

- $(10) A \rightarrow D \rightarrow G \rightarrow H$
- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

 $(11) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$

$$(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$$

 $(11) A \rightarrow B \rightarrow C$

 $(11) A \rightarrow D \rightarrow H$

 $(11) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$

$$(10)\,A{\longrightarrow}B{\longrightarrow}E{\longrightarrow}F{\longrightarrow}C$$

 $(11) A \rightarrow B \rightarrow C$

 $(11) A \rightarrow D \rightarrow H$

 $(11) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$

$$(10) A \rightarrow D \rightarrow G \rightarrow H$$

 $(11) A \rightarrow B \rightarrow C$

 $(11) A \rightarrow D \rightarrow H$

 $(11) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$

$$(10) A \rightarrow D \rightarrow G \rightarrow H$$

- $(11) A \rightarrow B \rightarrow C$
- $(11) A \rightarrow D \rightarrow H$
- $(11) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$
- $(13) A \rightarrow B \rightarrow E \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(10) A \rightarrow D \rightarrow G \rightarrow H$

$$(11) A \rightarrow B \rightarrow C$$

 $(11) A \rightarrow D \rightarrow H$

 $(11) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) \, A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(10) A \rightarrow D \rightarrow G \rightarrow H$

$$(11) A \rightarrow D \rightarrow H$$

$$(11) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$$

$$(13) A \rightarrow B \rightarrow E \rightarrow H$$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(10) A \rightarrow D \rightarrow G \rightarrow H$

$$(11) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
- $(10) A \rightarrow D \rightarrow G \rightarrow H$

- (0)A
- $(5) A \rightarrow B$
- $(7) A \rightarrow B \rightarrow E$
- (8) A→D
- $(8) A \rightarrow B \rightarrow E \rightarrow F$
- $(9) A \rightarrow D \rightarrow G$
- $(9) A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
- $(10) A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$ $(10) A \rightarrow D \rightarrow G \rightarrow H$

Dijkstra's Algorithm

- Maintain a set of "finished nodes."
- Add the path of just *s* to a priority queue with length 0.
- While the queue is not empty:
 - Dequeue the current path.
 - If the end node has not already been finished:
 - Mark the end node as finished.
 - Add to the priority queue all paths formed by expanding this current path by one step.

Minimum Spanning Trees

A **spanning tree** in an undirected graph is a set of edges with no cycles that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree with the least total cost.

Applications

Electric Grids

- Given a collection of houses, where do you lay wires to connect all houses with the least total cost?
- This was the initial motivation for studying minimum spanning trees in the early 1920's. (work done by Czech mathematician Otakar Borůvka)

Data Clustering

More on that later...

Kruskal's Algorithm

- **Kruskal's algorithm** is an efficient algorithm for finding minimum spanning trees.
- Idea is as follows:
 - Remove all edges from the graph.
 - Sort the edges into ascending order by length.
 - For each edge:
 - If the endpoints of the edge aren't already connected to one another, add in that edge.
 - Otherwise, skip the edge.

Maintaining Connectivity

- One of the key steps in Kruskal's algorithm is determining whether two nodes are connected to one another.
- There are many ways to do this:
 - Could do a DFS in the partially-constructed graph to see if the two nodes are reachable from one another.
 - Could store a list of all the clusters of nodes that are connected to one another.
- Classiest implementation: use a union/find data structure.
 - Check Wikipedia for details; it's surprisingly simple!

- Given a set of points, break those points apart into clusters.
- Immensely useful across all disciplines:
 - Cluster individuals by phenotype to try to determine what genes influence which traits.
 - Cluster images by pixel color to identify objects in pictures.
 - Cluster essays by various features to see how students learn to write.

What makes a clustering "good?"

- Maximum-separation clustering tries to find a clustering that maximizes the separation between different clusters.
- Specifically: Maximize the minimum distance between any two points of different clusters.
- Very good on many data sets, though not always ideal.

- It is extremely easy to adopt Kruskal's algorithm to produce a maximum-separation set of clusters.
 - Suppose you want *k* clusters.
 - Given the data set, add an edge from each node to each other node whose length depends on their similarity.
 - Run Kruskal's algorithm until *n k* edges have been added.
 - The pieces of the graph that have been linked together are *k* maximally-separated clusters.

Next Time

- Fun and Exciting Extra Topics
 - Machine learning?
 - Advanced graph algorithms?
 - Applications?