Graph Representations
and Algorithms



Announcements

Second midterm is tomorrow, Thursday, May 31.

Exam location by last name:
« A-F: Go to Hewlett 201.
« G-Z: Go to Hewlett 200.

Covers material up through and including Friday's
lecture.

Comprehensive, but primarily focuses on
algorithmic efficiency and data structures.



A graph is a mathematical structure
for representing relationships.
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Representing Graphs

Map<Node*, Vector<Node*> >

We can represent a graph
as a map from nodes to Node* Vector<Node™>

fhe list of nodes each Node | Connected To

node is connected fo.
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Representing Graphs

* Our initial approach of encoding a graph
as a Map<Node*, Vector<Node*> > will

not work if the edges have extra
information associated with them.

« We will need to adopt a different
strateqy.



Nodes and Arcs

 Idea One: Have two separate types, one
for nodes and one for arcs.

 Each node stores the set of arcs leaving
that node, plus any extra information.

« Each arc stores the nodes it connects,
plus any extra information.



struct Node ({ Node depends on
string name; ‘///////ﬂ Avc ..
Set<Arc*> arcs;

/* ... other data .. */

};

struct Arc {
Node* start;

Node* finish;“\\\\\\\\\¥ . and Arc

/* .. other data .. */ depends on Node:

};

struct SimpleGraph ({
Set<Node*> nodes;
Set<Arc*> edges;

};



A Dependency Graph
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struct Node;
struct Arc;

struct Node {
string name;
Set<Arc*> arcs;
/* ... other data .. */

), These are called
' torward declarations

struct Arc { and fell C++ fo expect

Node* start; struct definitions \ater,
Node* finish;

v : \
/* .. other data .. */ They've similar 1o

function prototypes,

};

struct SimpleGraph ({
Set<Node*> nodes;
Set<Arc*> edges;

};



Analyzing our Approach

« Advantages:

» Allows arbitrary values to be stored in each
node.

« Allows arbitrary values to be stored in each
edge.

e Disadvantages:

 No encapsulation; can create arcs without
adding them into nodes; can remove nodes
without removing corresponding arcs, etc.

« No memory management: Need to explicitly free
all nodes we've created.



A Graph Class

 We can use this strategy as the basis for
building an encapsulated Graph class.

« Similar to the previous approach:

« Stores nodes and edges separately.
 Nodes store pointers to edges and vice-versa.
 Fewer drawbacks:

« Automatically frees all memory for you.
 Ensures that arcs and nodes are linked properly.



Using Graph

« The Graph class we provide you is a template; You must
provide the node and arc types.

 For example:
Graph<Node, Arc> gl;
Graph<Node, LengthyArc> g2;

Graph<FlowchartNode, FlowchartArc> g3;
 Requirements:

« The node type must have a string called name and a
Set of arc pointers called arcs.

 The arc type must have two pointers to nodes
named start and finish.



Graph Types for Distances

struct USCity;
struct USArc;

struct USCity {
string name;
Set<USArc*> arcs;

};

struct USArc {
double distance;
USCity* start;
USCity* finish;
}s



Graph Types tor Robots

struct Robotlocation;
struct Transition;

struct RobotLocation {
string name;
Set<Transition*> arcs;

};

struct Transition {
double probability;
string event;
RobotLocation* start;
RobotlLocation* finish;



Graph Algorithms



Depth-First Search




Breadth-First Search




BEFS and DFS

 Depth-first search is good for
determining whether or not there exists
a path from s to t.

« Uses a stack.

 Breadth-first search is good for
determining the shortest path from s to t.

 Uses a queue.

« What happens if the edges now have
different lengths?



Shortest Paths

* You are given a directed graph where
each edge has a nonnegative weight.

« Given a starting node s, find the shortest
path (in terms of total weight) from s to
each other node t.
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One Possible Approach

» Split nodes into three groups:

Green nodes, where we know the
@ length of the shortest path,

Yellow nodes, where we have a guess
of the length of the shortest path, and

Red nodes, where we have no idea
what the path length is.

 Repeatedly remove the lowest-cost
yellow node, make it green, and update
all connected nodes.



Dijkstra's Algorithm

» This algorithm for finding shortest paths
is called Dijkstra's algorithm.

* One of the fastest algorithms for finding
the shortest path from s to all other
nodes in the graph.

 There are many ways to implement this
algorithm.
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Dijkstra's Algorithm

« Maintain a set of “finished nodes.”

« Add the path of just s to a priority queue with
length O.

 While the queue is not empty:

 Dequeue the current path.
« If the end node has not already been
finished:

- Mark the end node as finished.

- Add to the priority queue all paths formed by
expanding this current path by one step.
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Minimum Spanning Trees















A spanning tree in an undirected
graph is a set of edges with
no cycles that connects all nodes.



A minimum spanning tree (or MST) is a
spanning tree with the least total cost.



Applications

 Electric Grids

* Given a collection of houses, where do you
lay wires to connect all houses with the least
total cost?

« This was the initial motivation for studying
minimum spanning trees in the early 1920's.
(work done by Czech mathematician Otakar
Boruvka)

 Data Clustering

e More on that later...



Kruskal's Algorithm

 Kruskal's algorithm is an efficient algorithm
for finding minimum spanning trees.

 Idea is as follows:

 Remove all edges from the graph.
« Sort the edges into ascending order by length.
 For each edge:

- If the endpoints of the edge aren't already connected
to one another, add in that edge.

- Otherwise, skip the edge.
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These two nodes are
already connected 1o
one another:
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A graph can have many
minimum spanning trees,
Here, the choice of

which length—4 edge we

visif first leads to
different results.
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Maintaining Connectivity

* One of the key steps in Kruskal's algorithm is
determining whether two nodes are connected to one
another.

 There are many ways to do this:

 Could do a DFS in the partially-constructed graph to see
if the two nodes are reachable from one another.

e Could store a list of all the clusters of nodes that are
connected to one another.

» Classiest implementation: use a union/find data
structure.

 Check Wikipedia for details; it's surprisingly simple!



Data Clustering
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Data Clustering




Data Clustering

* Given a set of points, break those points
apart into clusters.

 Immensely useful across all disciplines:

e Cluster individuals by phenotype to try to
determine what genes influence which traits.

e Cluster images by pixel color to identify
objects in pictures.

« Cluster essays by various features to see
how students learn to write.



Data Clustering
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Data Clustering




What makes a clustering “good?”



Maximum-Separation Clustering

« Maximum-separation clustering tries
to find a clustering that maximizes the
separation between different clusters.

« Specifically: Maximize the minimum
distance between any two points of
different clusters.

* Very good on many data sets, though not
always ideal.



Maximum-Separation Clustering
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Maximum-Separation Clustering

» It is extremely easy to adopt Kruskal's
algorithm to produce a maximum-separation
set of clusters.

 Suppose you want k clusters.

* Given the data set, add an edge from each node
to each other node whose length depends on
their similarity.

 Run Kruskal's algorithm until n - k edges have
been added.

 The pieces of the graph that have been linked
together are k maximally-separated clusters.



Maximum-Separation Clustering
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Maximum-Separation Clustering
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Maximum-Separation Clustering
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Next Time

 Fun and Exciting Extra Topics

 Machine learning?
» Advanced graph algorithms?
« Applications?
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