Graph Representations
and Algorithms

Announcements

Second midterm is tomorrow, Thursday, May 31.

Exam location by last name:
« A-F: Go to Hewlett 201.
« G-Z: Go to Hewlett 200.

Covers material up through and including Friday's
lecture.

Comprehensive, but primarily focuses on
algorithmic efficiency and data structures.

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

Z
@< Nodes \
@

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A
N

A graph consists of a set of nodes
connected by edges.

Representing Graphs

Map<Node*, Vector<Node*> >

We can represent a graph
as a map from nodes to Node* Vector<Node™>

fhe list of nodes each Node | Connected To

node is connected fo.

As The Crow Flies

Minneap
777mi 60
San Francisco; CA
2200mi
935mi
1540mi 1319mi
Dallas, =

How would we
represent This
graph?

DC

Karel Goes Ice Skating

(This graph s
called a Markov
model)

2 | |
1 "LJ '
1 2

How would we
represent this
graph?

down, 20%
right, 20%

left, 20%
down, 20%

O

@ right, 80%

up, 80%

left, 80%

down, 80% up, 80%

right, 80%

)

down, 80%

Z@
@l left. 80%

right, 20%
up, 20%

left, 20%
up, 20%

Keep on Truckin'

10' 6 11' 67 9'9”

12' 6~ 11' 8" 10" 9
10" 8” 10" 4~ 11' 0"

10' 6~ 11' 27 9'6”
10" 57 10" 37 11' 27

How would we
represent this
graph?

Representing Graphs

* Our initial approach of encoding a graph
as a Map<Node*, Vector<Node*> > will

not work if the edges have extra
information associated with them.

« We will need to adopt a different
strateqy.

Nodes and Arcs

 Idea One: Have two separate types, one
for nodes and one for arcs.

 Each node stores the set of arcs leaving
that node, plus any extra information.

« Each arc stores the nodes it connects,
plus any extra information.

struct Node ({ Node depends on
string name; ‘///////ﬂ Avc ..
Set<Arc*> arcs;

/* ... other data .. */

};

struct Arc {
Node* start;

Node* finish;“\\\\\\\\\¥ . and Arc

/* .. other data .. */ depends on Node:

};

struct SimpleGraph ({
Set<Node*> nodes;
Set<Arc*> edges;

};

A Dependency Graph

.
[Node { Arc]
- L

>

struct Node;
struct Arc;

struct Node {
string name;
Set<Arc*> arcs;
/* ... other data .. */

), These are called
' torward declarations

struct Arc { and fell C++ fo expect

Node* start; struct definitions \ater,
Node* finish;

v : \
/* .. other data .. */ They've similar 1o

function prototypes,

};

struct SimpleGraph ({
Set<Node*> nodes;
Set<Arc*> edges;

};

Analyzing our Approach

« Advantages:

» Allows arbitrary values to be stored in each
node.

« Allows arbitrary values to be stored in each
edge.

e Disadvantages:

 No encapsulation; can create arcs without
adding them into nodes; can remove nodes
without removing corresponding arcs, etc.

« No memory management: Need to explicitly free
all nodes we've created.

A Graph Class

 We can use this strategy as the basis for
building an encapsulated Graph class.

« Similar to the previous approach:

« Stores nodes and edges separately.
 Nodes store pointers to edges and vice-versa.
 Fewer drawbacks:

« Automatically frees all memory for you.
 Ensures that arcs and nodes are linked properly.

Using Graph

« The Graph class we provide you is a template; You must
provide the node and arc types.

 For example:
Graph<Node, Arc> gl;
Graph<Node, LengthyArc> g2;

Graph<FlowchartNode, FlowchartArc> g3;
 Requirements:

« The node type must have a string called name and a
Set of arc pointers called arcs.

 The arc type must have two pointers to nodes
named start and finish.

Graph Types for Distances

struct USCity;
struct USArc;

struct USCity {
string name;
Set<USArc*> arcs;

};

struct USArc {
double distance;
USCity* start;
USCity* finish;
}s

Graph Types tor Robots

struct Robotlocation;
struct Transition;

struct RobotLocation {
string name;
Set<Transition*> arcs;

};

struct Transition {
double probability;
string event;
RobotLocation* start;
RobotlLocation* finish;

Graph Algorithms

Depth-First Search

Breadth-First Search

BEFS and DFS

 Depth-first search is good for
determining whether or not there exists
a path from s to t.

« Uses a stack.

 Breadth-first search is good for
determining the shortest path from s to t.

 Uses a queue.

« What happens if the edges now have
different lengths?

Shortest Paths

* You are given a directed graph where
each edge has a nonnegative weight.

« Given a starting node s, find the shortest
path (in terms of total weight) from s to
each other node t.

it S Fall Ao

% Menlo Oaks b :Eu
.-EP .1""-.,._ - >
x & fer) Pl ¢
SRI 3 -.
_\\ International S \ . I+jﬁ.lt
5] u [alo Alo =
t‘“ ty Ave ‘Airport of Santa
j ME""‘}FE* : . Crascent “Mc ' Clara County
4 : ' Park i
n ib, Dawntown \ 3 Duwniuwn : Dwengchl- ‘-'4:;.,::‘ =
Menlo Parks o North = St. Francis ::.._ A
+ : 3 . munity
f@ { ’ .MH Cr'E'ﬁtE'r { =
0& @ M{E'H%H F'Ei-:r Alto Le1and TR El g Weer Park
: NS Mano ™"
r oFell ’$ {?’% Old Palo
{ %o Alta
4] e ;
ik f i : % "i% Wihown
Stanford i EI-' ' i gline
3 5 I.Inl'u'arsny . S lr,}.xq:,&t lpuntain
| il. ' ke i T 5 o r—.-.'_:'\-__-:a Fark
! L—]n : 'S?H“f. 4
:f Hiﬁﬂ-l?lll B 35 ' " o “5'4?:.& ; Charleston "'TF Goaogle
y y - & & Gardens
E o 5 f;l NM'. "Fﬂ' tli:'.'i. I
- Stanford G, Charleston % ool t*‘-w. = |
4 Weekend Ac £ Meadow reenmea . .
st Weeke res % o | ; : : Old Middiefielg "‘""ta-,. L
- "EEWE Q? .;ﬁ;_'-, B T
% §
q’g VA Palo Alto
Health System

Notice how our quess ot
the path length o this
node just changed,

One Possible Approach

» Split nodes into three groups:

Green nodes, where we know the
@ length of the shortest path,

Yellow nodes, where we have a guess
of the length of the shortest path, and

Red nodes, where we have no idea
what the path length is.

 Repeatedly remove the lowest-cost
yellow node, make it green, and update
all connected nodes.

Dijkstra's Algorithm

» This algorithm for finding shortest paths
is called Dijkstra's algorithm.

* One of the fastest algorithms for finding
the shortest path from s to all other
nodes in the graph.

 There are many ways to implement this
algorithm.

(0) A

(0) A

(5) A—B

(8) A—D

(0)A

(0) A

(5) A—B

(0) A

(5) A—B

(8) A—D

(11) A—-B—C

(7) A—-B—E

(0) A

(5) A—B

(7) A-B—E

(8) A—D
(11) A—-B—C

(0)A

(5) A—B

(11) A—-B—C

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(11) A—-B—C

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(11) A—-B—C

(8) A-B—E—F

(13) A-B—E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(11) A—-B—C

(13) A-B—E—H

(8) A-B—E—F

(11) A—-B—C
(13) A-~B—E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(11) A—-B—C
(13) A-B—E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(11) A—-B—C

(13) A-B—E—H

(9) A-D—G

(11) A->D—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(9) A-D—G

(11) A—-B—C

(11) A->D—H

(13) A-B—E—H

(9) A»D—G

(11) A—-B—C
(11) A—-D—H
(13) A-~B—E—H

(9) A—-D—-G

(11) A—»B—-C
(11) A—-D—H
(13) A-~B—E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(9) A-D—G

(11) A—-B—C

(11) A->D—H

(13) A-B—E—H

(9) A-B—E—F—I

(10) A= B—E—F—-C

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(9) A-D—G

(9) A-B—E—F—I

(10) A= B—E—F—-C

(11) A»B—C

)
(11) A—-D—H
(13) A-B—E—H

(9) A-B—E—F—l

(10) A-B—E—F—-C
(11) A—-»B—C

(11) A—-D—H

(13) A-~B—E—H

(9) A-B—E—F—l
(10) A-B—E—F—-C
(11) A—»B—-C

(11) A—-D—H

(13) A-~B—E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(9) A-D—G

(9) A-B—E—F—I

(10) A= B—E—F—-C

(11) A»B—C

)
(11) A—-D—H
(13) A-B—E—H

(10) A D—-G—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(9) A-D—G

(9) A-B—E—F—I

(10) A= B—E—F—-C

(10) A D—-G—H

(11) A»B—C

)

)
(11) A—-D—H
(13) A-B—E—H

(10) A-B—E—F—-C

(10) A-D—-G—H

(11) A—-B—C

(11) A—-D—H

(13) A-~B—E—H

(10) A-B—E—F—-C

(10) A-D—-G—H

(11) A—-B—C

(11) A—-D—H

(13) A-~B—E—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(9) A-D—G

(9) A-B—E—F—I

(10) A= B—E—F—-C

(10) A D—-G—H

(11) A—-D—H

)
)
(11) A—»B—C
)
)

(13) A-B—E—H

(11) A-B—-E—F—Il—H

(0) A

(5) A—B

(7) A-B—E

(8) A—D

(8) A-B—E—F

(9) A-D—G

(9) A-B—E—F—I

(10) A= B—E—F—-C

(10) A D—-G—H

(11) A»B—C

(11) A—-D—H

(1) A-B—E—F—I—H

N | N | S | SN N | N

(13) A-B—E—H

(10) A-D—-G—H

(11) A—»B—-C

(11) A—-D—H

(11) A>B—E—F—Il—H
(13) A-~B—E—H

(10) A-D—-G—H

(11) A—-B—C

(11) A—-D—H

(11) A B—E—F—I—H

(13) A-~B—E—H

(11) A—-B—C

(11) A—-D—H
(11) A B—E—F—I—H
(13) A-~B—E—H

(11
(11;A—>B
('1'1)2_)D_)C
(13 - :

)A—>B_)

B—)IIEE_)F
— =
H -

(11
(11;2_)D
(13 - :
)A—>B_)
B—)IIEE_)F
—> _)I
H -

6 2
5 1
2
1
(11) A B—E—F—I|—H

(13) A-~B—E—H

(1
3)A—
B
—E
—H

Dijkstra's Algorithm

« Maintain a set of “finished nodes.”

« Add the path of just s to a priority queue with
length O.

 While the queue is not empty:

 Dequeue the current path.
« If the end node has not already been
finished:

- Mark the end node as finished.

- Add to the priority queue all paths formed by
expanding this current path by one step.

FaI0 AITD

et A, g
AN ‘o #%l Menlo Oaks %
| 1 m
< > Ror b
s 5
w R ;'
International =
.4 A g = e Q"ﬂ% Pala Alto
L & Alrport of Santa
o) Menlo Park » ~J Crescent W Clara County
g % Park wffa
n [ﬁ] e ! Dowmiown Downtown of%@ Duveneck - ?&:’;f
Menla Park Morth Y =i Francis
+ Community
i ‘aﬁf Center
X]
-:fsr & 5 & Palo Alto Leland Tn er Park Palo Alto
p> = __f‘: Manor Baylands Fark
gl o 3
= il '5}% Old Palo
%, Alto
Sharaline
1L T Lake A
=tanford =horeline
Lniversity I
: = Stanfo A
:urﬂ- SI.Fl.i.I{grd ae "E"’::-.EI %, Charleston
y & b %%Er Gardens
" £ & Ky
& =tanford g -
= Fe E
n Weekend Acres %f':'&a. = % 600@\8 maps uses a
-’-&&, Q&=
*a-_ . . .
b'e P moditied version of
L2580 2 d A Palo Alto N ,
T v
S Dijkstra's algorithm
f
% BN called A* search,
1 mi ﬁ% I
| i e T RAirareds = o

4 brrm

Minimum Spanning Trees

A spanning tree in an undirected
graph is a set of edges with
no cycles that connects all nodes.

A minimum spanning tree (or MST) is a
spanning tree with the least total cost.

Applications

 Electric Grids

* Given a collection of houses, where do you
lay wires to connect all houses with the least
total cost?

« This was the initial motivation for studying
minimum spanning trees in the early 1920's.
(work done by Czech mathematician Otakar
Boruvka)

 Data Clustering

e More on that later...

Kruskal's Algorithm

 Kruskal's algorithm is an efficient algorithm
for finding minimum spanning trees.

 Idea is as follows:

 Remove all edges from the graph.
« Sort the edges into ascending order by length.
 For each edge:

- If the endpoints of the edge aren't already connected
to one another, add in that edge.

- Otherwise, skip the edge.

©.0.0.0

©.0.0.0

©.0.0.0

O---0 .0 .0

O - O Ol@
O O O

mﬂ

O - O Ol@
O O O

O O
AN
AL

O O
AN
-3.-06 4

These two nodes are
already connected 1o
one another:

O O
5 6
5 5]
4@7
1
3 46 5
3 6 4

3 6
3 6
4 7
I
1
3 46 5
3 6 4

A graph can have many
minimum spanning trees,
Here, the choice of

which length—4 edge we

visif first leads to
different results.

Oo—0O * O—=C

Oo—0O * O—=C

5
(—C
3

‘ N ‘ o)) ‘ ~ O

o—0O O—C

o—0O O—C

5
(—C
3

O—0O 0O . 0O

o—0O O—C

5
(—C
3

Maintaining Connectivity

* One of the key steps in Kruskal's algorithm is
determining whether two nodes are connected to one
another.

 There are many ways to do this:

 Could do a DFS in the partially-constructed graph to see
if the two nodes are reachable from one another.

e Could store a list of all the clusters of nodes that are
connected to one another.

» Classiest implementation: use a union/find data
structure.

 Check Wikipedia for details; it's surprisingly simple!

Data Clustering

. ® o
© o ® o
.

o0 @

Data Clustering

Data Clustering

* Given a set of points, break those points
apart into clusters.

 Immensely useful across all disciplines:

e Cluster individuals by phenotype to try to
determine what genes influence which traits.

e Cluster images by pixel color to identify
objects in pictures.

« Cluster essays by various features to see
how students learn to write.

Data Clustering

Data Clustering

Data Clustering

What makes a clustering “good?”

Maximum-Separation Clustering

« Maximum-separation clustering tries
to find a clustering that maximizes the
separation between different clusters.

« Specifically: Maximize the minimum
distance between any two points of
different clusters.

* Very good on many data sets, though not
always ideal.

Maximum-Separation Clustering

Maximum-Separation Clustering

. ® o
© @ f@
.
e
e o @Q\"
o © ®
.

Maximum-Separation Clustering

» It is extremely easy to adopt Kruskal's
algorithm to produce a maximum-separation
set of clusters.

 Suppose you want k clusters.

* Given the data set, add an edge from each node
to each other node whose length depends on
their similarity.

 Run Kruskal's algorithm until n - k edges have
been added.

 The pieces of the graph that have been linked
together are k maximally-separated clusters.

Maximum-Separation Clustering

2
.

Maximum-Separation Clustering

P4
S

Maximum-Separation Clustering

. ® o
© o _ .
o0 e

e o_o0 ©

Next Time

 Fun and Exciting Extra Topics

 Machine learning?
» Advanced graph algorithms?
« Applications?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164

