Graph Representations and Algorithms

Announcements

- Second midterm is tomorrow, Thursday, May 31.
- Exam location by last name:
- A - F: Go to Hewlett 201.
- G - Z: Go to Hewlett 200.
- Covers material up through and including Friday's lecture.
- Comprehensive, but primarily focuses on algorithmic efficiency and data structures.

A graph is a mathematical structure for representing relationships.

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes connected by edges.

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes connected by edges.

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes connected by edges.

Representing Graphs

We can represent a graph as a map from nodes to the list of nodes each node is connected to.

Map<Node*, Vector<Node*\gg Node* Vector<Node*>
Node Connected To

As The Crow Flies

Karel Goes Ice Skating

(This graph is called a Markov model)

How would we represent this graph?
down, 20\% right, 20\%

Keep on Truckin'

How would we
represent this graph?

Representing Graphs

- Our initial approach of encoding a graph as a Map<Node*, Vector<Node*\gg will not work if the edges have extra information associated with them.
- We will need to adopt a different strategy.

Nodes and Arcs

- Idea One: Have two separate types, one for nodes and one for arcs.
- Each node stores the set of arcs leaving that node, plus any extra information.
- Each arc stores the nodes it connects, plus any extra information.
string name;
Set<Arc*> arcs; 4 /* ... other data ... */
\};
struct Arc \{
Node* start;
Node* finish;
/* ... other data ... */

```
... and Arc
depends on Node:
```

\};
struct SimpleGraph \{ Set<Node*> nodes; Set<Arc*> edges;
\};

A Dependency Graph


```
struct Node;
struct Arc;
struct Node {
    string name;
    Set<Arc*> arcs;
    /* ... other data ... */
};
struct Arc {
    Node* start;
    Node* finish;
    /* ... other data ... */
};
```

These are called forward declarations and tell $\mathrm{C}++$ to expect struct definitions later.

They're similar to function prototypes.
struct SimpleGraph \{
Set<Node*> nodes; Set<Arc*> edges;
\};

Analyzing our Approach

- Advantages:
- Allows arbitrary values to be stored in each node.
- Allows arbitrary values to be stored in each edge.
- Disadvantages:
- No encapsulation; can create arcs without adding them into nodes; can remove nodes without removing corresponding arcs, etc.
- No memory management: Need to explicitly free all nodes we've created.

A Graph Class

- We can use this strategy as the basis for building an encapsulated Graph class.
- Similar to the previous approach:
- Stores nodes and edges separately.
- Nodes store pointers to edges and vice-versa.
- Fewer drawbacks:
- Automatically frees all memory for you.
- Ensures that arcs and nodes are linked properly.

Using Graph

- The Graph class we provide you is a template; You must provide the node and arc types.
- For example:

$$
\begin{gathered}
\text { Graph<Node, Arc> g1; } \\
\text { Graph<Node, LengthyArc> g2; } \\
\text { Graph<FlowchartNode, FlowchartArc> g3; }
\end{gathered}
$$

- Requirements:
- The node type must have a string called name and a set of arc pointers called arcs.
- The arc type must have two pointers to nodes named start and finish.

Graph Types for Distances

struct USCity;
struct USArc;
struct USCity \{
string name;
Set<USArc*> arcs;
\};
struct USArc \{
double distance;
USCity* start;
USCity* finish;
\};

Graph Types for Robots

struct RobotLocation;
struct Transition;
struct RobotLocation \{
string name;
Set<Transition*> arcs;
\};
struct Transition \{
double probability;
string event;
RobotLocation* start;
RobotLocation* finish;
\};

Graph Algorithms

Depth-First Search

Breadth-First Search

BFS and DFS

- Depth-first search is good for determining whether or not there exists a path from s to t.
- Uses a stack.
- Breadth-first search is good for determining the shortest path from s to t.
- Uses a queue.
- What happens if the edges now have different lengths?

Shortest Paths

- You are given a directed graph where each edge has a nonnegative weight.
- Given a starting node s, find the shortest path (in terms of total weight) from s to each other node t.

O: O: O:

One Possible Approach

- Split nodes into three groups:

Green nodes, where we know the
13 length of the shortest path,
42? Yellow nodes, where we have a guess of the length of the shortest path, and
Red nodes, where we have no idea what the path length is.

- Repeatedly remove the lowest-cost yellow node, make it green, and update all connected nodes.

Dijkstra's Algorithm

- This algorithm for finding shortest paths is called Dijkstra's algorithm.
- One of the fastest algorithms for finding the shortest path from s to all other nodes in the graph.
- There are many ways to implement this algorithm.

(0) A

(0) A
(5) $A \rightarrow B$
(8) $A \rightarrow D$
(11) $A \rightarrow B \rightarrow C$
(7) $A \rightarrow B \rightarrow E$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$
(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$
(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$

$$
\begin{aligned}
& \text { (9) } A \rightarrow D \rightarrow G \\
& \text { (11) } A \rightarrow B \rightarrow C \\
& \text { (11) } A \rightarrow D \rightarrow H \\
& \text { (13) } A \rightarrow B \rightarrow E \rightarrow H
\end{aligned}
$$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$

$$
\begin{aligned}
& \text { (9) } A \rightarrow D \rightarrow G \\
& \text { (11) } A \rightarrow B \rightarrow C \\
& \text { (11) } A \rightarrow D \rightarrow H \\
& \text { (13) } A \rightarrow B \rightarrow E \rightarrow H
\end{aligned}
$$

$$
\text { (9) } \mathrm{A} \rightarrow \mathrm{~B} \rightarrow \mathrm{E} \rightarrow \mathrm{~F} \rightarrow \mathrm{I}
$$

$$
\text { (10) } \mathrm{A} \rightarrow \mathrm{~B} \rightarrow \mathrm{E} \rightarrow \mathrm{~F} \rightarrow \mathrm{C}
$$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$
(9) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
(10) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(13) $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{E} \rightarrow \mathrm{H}$
(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$

$$
\begin{aligned}
& \text { (9) } A \rightarrow D \rightarrow G \\
& \text { (9) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \\
& \text { (10) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow C \\
& \text { (11) } A \rightarrow B \rightarrow C \\
& \text { (11) } A \rightarrow D \rightarrow H \\
& \text { (13) } A \rightarrow B \rightarrow E \rightarrow H
\end{aligned}
$$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$

$$
\begin{aligned}
& \text { (9) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \\
& \text { (10) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow C \\
& \text { (11) } A \rightarrow B \rightarrow C \\
& \text { (11) } A \rightarrow D \rightarrow H \\
& \text { (13) } A \rightarrow B \rightarrow E \rightarrow H
\end{aligned}
$$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$

$$
\begin{aligned}
& \text { (9) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \\
& \text { (10) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow C \\
& \text { (11) } A \rightarrow B \rightarrow C \\
& \text { (11) } A \rightarrow D \rightarrow H \\
& \text { (13) } A \rightarrow B \rightarrow E \rightarrow H \\
& \text { (10) } A \rightarrow D \rightarrow G \rightarrow H
\end{aligned}
$$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$

$$
\begin{aligned}
& \text { (9) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \\
& \text { (10) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow C \\
& \text { (10) } A \rightarrow D \rightarrow G \rightarrow H \\
& \text { (11) } A \rightarrow B \rightarrow C \\
& \text { (11) } A \rightarrow D \rightarrow H \\
& \text { (13) } A \rightarrow B \rightarrow E \rightarrow H
\end{aligned}
$$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$

$$
\begin{aligned}
& \text { (9) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \\
& \text { (10) } A \rightarrow B \rightarrow E \rightarrow F \rightarrow C \\
& \text { (10) } A \rightarrow D \rightarrow G \rightarrow H \\
& \text { (11) } A \rightarrow B \rightarrow C \\
& \text { (11) } A \rightarrow D \rightarrow H \\
& \text { (13) } A \rightarrow B \rightarrow E \rightarrow H
\end{aligned}
$$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$
(9) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$

(10) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
(10) $A \rightarrow D \rightarrow G \rightarrow H$
(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$
(9) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
(10) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
(10) $A \rightarrow D \rightarrow G \rightarrow H$
(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$
(11) $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{I} \rightarrow \mathrm{H}$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$
(9) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$

(10) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
(10) $A \rightarrow D \rightarrow G \rightarrow H$
(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(11) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$
(9) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$

(10) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
(10) $A \rightarrow D \rightarrow G \rightarrow H$
(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(11) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$

(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$
(9) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
(10) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
(10) $A \rightarrow D \rightarrow G \rightarrow H$
(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(11) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$
(0) A
(5) $A \rightarrow B$
(7) $A \rightarrow B \rightarrow E$
(8) $A \rightarrow D$
(8) $A \rightarrow B \rightarrow E \rightarrow F$
(9) $A \rightarrow D \rightarrow G$
(9) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I$
(10) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow C$
(10) $A \rightarrow D \rightarrow G \rightarrow H$
(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(11) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$


```
(0) A
(5) \(A \rightarrow B\)
(7) \(A \rightarrow B \rightarrow E\)
(8) \(A \rightarrow D\)
(8) \(A \rightarrow B \rightarrow E \rightarrow F\)
(9) \(A \rightarrow D \rightarrow G\)
(9) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow I\)
(10) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow C\)
(10) \(A \rightarrow D \rightarrow G \rightarrow H\)
```

(11) $A \rightarrow B \rightarrow C$
(11) $A \rightarrow D \rightarrow H$
(11) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$


```
(0) A
(5) \(A \rightarrow B\)
(7) \(A \rightarrow B \rightarrow E\)
(8) \(A \rightarrow D\)
(8) \(A \rightarrow B \rightarrow E \rightarrow F\)
(9) \(A \rightarrow D \rightarrow G\)
(9) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow I\)
(10) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow C\)
(10) \(A \rightarrow D \rightarrow G \rightarrow H\)
```

(11) $A \rightarrow D \rightarrow H$
(11) $A \rightarrow B \rightarrow E \rightarrow F \rightarrow I \rightarrow H$
(13) $A \rightarrow B \rightarrow E \rightarrow H$


```
(0) A
(5) \(A \rightarrow B\)
(7) \(A \rightarrow B \rightarrow E\)
(8) \(A \rightarrow D\)
(8) \(A \rightarrow B \rightarrow E \rightarrow F\)
(9) \(A \rightarrow D \rightarrow G\)
(9) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow I\)
(10) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow C\)
(10) \(A \rightarrow D \rightarrow G \rightarrow H\)
```



```
(0) A
(5) \(A \rightarrow B\)
(7) \(A \rightarrow B \rightarrow E\)
(8) \(A \rightarrow D\)
(8) \(A \rightarrow B \rightarrow E \rightarrow F\)
(9) \(A \rightarrow D \rightarrow G\)
(9) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow I\)
(10) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow C\)
(10) \(A \rightarrow D \rightarrow G \rightarrow H\)
```

(13) $A \rightarrow B \rightarrow E \rightarrow H$


```
(0) A
(5) \(A \rightarrow B\)
(7) \(A \rightarrow B \rightarrow E\)
(8) \(A \rightarrow D\)
(8) \(A \rightarrow B \rightarrow E \rightarrow F\)
(9) \(A \rightarrow D \rightarrow G\)
(9) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow I\)
(10) \(A \rightarrow B \rightarrow E \rightarrow F \rightarrow C\)
(10) \(A \rightarrow D \rightarrow G \rightarrow H\)
```


Dijkstra's Algorithm

- Maintain a set of "finished nodes."
- Add the path of just s to a priority queue with length 0 .
- While the queue is not empty:
- Dequeue the current path.
- If the end node has not already been finished:
- Mark the end node as finished.
- Add to the priority queue all paths formed by expanding this current path by one step.

Minimum Spanning Trees

A spanning tree in an undirected graph is a set of edges with no cycles that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree with the least total cost.

Applications

- Electric Grids
- Given a collection of houses, where do you lay wires to connect all houses with the least total cost?
- This was the initial motivation for studying minimum spanning trees in the early 1920's. (work done by Czech mathematician Otakar Borůvka)
- Data Clustering
- More on that later...

Kruskal's Algorithm

- Kruskal's algorithm is an efficient algorithm for finding minimum spanning trees.
- Idea is as follows:
- Remove all edges from the graph.
- Sort the edges into ascending order by length.
- For each edge:
- If the endpoints of the edge aren't already connected to one another, add in that edge.
- Otherwise, skip the edge.

7

5
5
6
6

4

7

1
4
3
$4 \quad 6$
2

6

4

7

These two nodes are already connected to one another:

A graph can have many minimum spanning trees. Here, the choice of which length-4 edge we visit first leads to different results.

7
7

6
5

4

6

4

Maintaining Connectivity

- One of the key steps in Kruskal's algorithm is determining whether two nodes are connected to one another.
- There are many ways to do this:
- Could do a DFS in the partially-constructed graph to see if the two nodes are reachable from one another.
- Could store a list of all the clusters of nodes that are connected to one another.
- Classiest implementation: use a union/find data structure.
- Check Wikipedia for details; it's surprisingly simple!

Data Clustering

Data Clustering

Data Clustering

- Given a set of points, break those points apart into clusters.
- Immensely useful across all disciplines:
- Cluster individuals by phenotype to try to determine what genes influence which traits.
- Cluster images by pixel color to identify objects in pictures.
- Cluster essays by various features to see how students learn to write.

Data Clustering

Data Clustering

Data Clustering

What makes a clustering "good?"

Maximum-Separation Clustering

- Maximum-separation clustering tries to find a clustering that maximizes the separation between different clusters.
- Specifically: Maximize the minimum distance between any two points of different clusters.
- Very good on many data sets, though not always ideal.

Maximum-Separation Clustering

Maximum-Separation Clustering

Maximum-Separation Clustering

- It is extremely easy to adopt Kruskal's algorithm to produce a maximum-separation set of clusters.
- Suppose you want k clusters.
- Given the data set, add an edge from each node to each other node whose length depends on their similarity.
- Run Kruskal's algorithm until $n-k$ edges have been added.
- The pieces of the graph that have been linked together are k maximally-separated clusters.

Maximum-Separation Clustering

Maximum-Separation Clustering

Maximum-Separation Clustering

Next Time

- Fun and Exciting Extra Topics
- Machine learning?
- Advanced graph algorithms?
- Applications?

