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4:15PM, Outside Gates



  

Announcements

● Second midterm is next Thursday, May 31.

● Exam location by last name:
● A – F: Go to Hewlett 201.
● G – Z: Go to Hewlett 200.

● Covers material up through and including today's 
lecture.

● Comprehensive, but primarily focuses on 
algorithmic efficiency and data structures.

● Practice exam posted to course website.

● Review session next Tuesday from 7-9PM in 
Hewlett 201.



  

In the news...



  



  



  

A Social Network



  

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gif



  

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg



  

http://www.toothpastefordinner.com/
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A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Edges



  

Some graphs are directed.
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Some graphs are undirected.

You can think of them as directed
graphs with edges both ways.



  

How can we represent graphs in C++?



  

Representing Graphs

Node Connected To            

Vector<Node*>      Node*

Map<Node*, Vector<Node*>>   We can represent a graph 
as a map from nodes to 
the list of nodes each 
node is connected to.



  

The Wikipedia Graph

● Wikipedia (and the 
web in general) is 
a graph!

● Each page is a 
node.

● There is an edge 
from one page to 
another if the first 
page links to the 
second.



  

Iterating over a Graph

● Given a linked list, there was just one way to 
traverse the list.
● Keep going forward.

● In a binary search tree, we saw three 
traversals:
● Preorder
● Inorder
● Postorder.

● There are many ways to iterate over a graph.
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Iterating over a Graph

● Maintain a collection C of nodes to visit.
● Initialize C with a start node.
● While C is not empty:

● Pick a node v out of C.
● Follow all outgoing edges from v, adding 

each unvisited node found this way to C.

● Eventually explores all nodes reachable 
from the starting set of nodes.



  

Iterating over a Graph

Maintain a collection C of nodes to visit.

Initialize C with a start node.

While C is not empty:
● Pick a node v out of C.

Follow all outgoing edges from v, adding 
each unvisited node found this way to C.

Eventually explores all nodes reachable 
from the starting set of nodes.
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Iterative DFS

DFS(Node v, Set<Node> visited) {
   Create a Stack<Node> of nodes to visit;
   Add v to the stack;

   while (The stack is not empty) {
      Pop a node from the stack, let it be u;

      if (u has been visited) continue;
      Add u to the visited set;
   
      for (Node w connected to u)
         Push w onto the stack;
   }
}
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Creating a Maze with DFS

● Create a grid graph of the appropriate 
size.

● Starting at any node, run a depth-first 
search, adding the arcs to the stack in 
random order.

● The resulting DFS tree is a maze with 
one solution.



  

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.
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Breadth-First Search



  

Breadth-First Search

● Specialization of the general search 
algorithm where nodes to visit are put 
into a queue.

● Explores nodes one hop away, then two 
hops away, etc.

● Finds path with fewest edges from start 
node to all other nodes.
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Implementing BFS

BFS(Node v, Set<Node> visited) {
   Create a Queue<Node> of nodes to visit;
   Add v to the queue;

   while (The queue is not empty) {
      Dequeue a node from the queue, let it be u;

      if (u has been visited) continue;
      Add u to the visited set;
   
      for (Node w connected to u)
         Enqueue w in the queue;
   }
}
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Classic Graph Algorithms



  

Graph Coloring

● Given a graph G, assign colors to the nodes so 
that no edge has endpoints of the same color.

● The chromatic number of a graph is the 
fewest number of colors needed to color it.
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Graph Coloring is Hard.

● No efficient algorithms are known for 
determining whether a graph can be 
colored with k colors for any k > 2.

● Want $1,000,000?  Find a polynomial-
time algorithm or prove that none 
exists.



  

Next Time

● More Graphs
● Representing graphs with extra information.
● Dijkstra's algorithm.
● Kruskal's algorithm.
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