

Graphs

Friday Four Square!
4:15PM, Outside Gates

Announcements

● Second midterm is next Thursday, May 31.

● Exam location by last name:
● A – F: Go to Hewlett 201.
● G – Z: Go to Hewlett 200.

● Covers material up through and including today's
lecture.

● Comprehensive, but primarily focuses on
algorithmic efficiency and data structures.

● Practice exam posted to course website.

● Review session next Tuesday from 7-9PM in
Hewlett 201.

In the news...

A Social Network

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gif

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://www.toothpastefordinner.com/

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Nodes

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Edges

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

You can think of them as directed
graphs with edges both ways.

How can we represent graphs in C++?

Representing Graphs

Node Connected To

Vector<Node*> Node*

Map<Node*, Vector<Node*>> We can represent a graph
as a map from nodes to
the list of nodes each
node is connected to.

The Wikipedia Graph

● Wikipedia (and the
web in general) is
a graph!

● Each page is a
node.

● There is an edge
from one page to
another if the first
page links to the
second.

Iterating over a Graph

● Given a linked list, there was just one way to
traverse the list.
● Keep going forward.

● In a binary search tree, we saw three
traversals:
● Preorder
● Inorder
● Postorder.

● There are many ways to iterate over a graph.

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

Iterating over a Graph

● Maintain a collection C of nodes to visit.
● Initialize C with a start node.
● While C is not empty:

● Pick a node v out of C.
● Follow all outgoing edges from v, adding

each unvisited node found this way to C.

● Eventually explores all nodes reachable
from the starting set of nodes.

Iterating over a Graph

Maintain a collection C of nodes to visit.

Initialize C with a start node.

While C is not empty:
● Pick a node v out of C.

Follow all outgoing edges from v, adding
each unvisited node found this way to C.

Eventually explores all nodes reachable
from the starting set of nodes.

Depth-First Search

Depth-first search

A B

D E

C

F

Depth-first search

A B

D E

C

F

Stack

Depth-first search

A B

D E

C

F

Stack

A

Depth-first search

A B

D E

C

F

Stack

Depth-first search

A B

D E

C

F

Stack

B

E

Depth-first search

A B

D E

C

F

Stack

B

E

Depth-first search

A B

D E

C

F

Stack

B

Depth-first search

A B

D E

C

F

Stack

B

D

F

C

Depth-first search

A B

D E

C

F

Stack

B

D

F

C

Depth-first search

A B

D E

C

F

Stack

B

D

F

Depth-first search

A B

D E

C

F

Stack

B

D

F

Depth-first search

A B

D E

C

F

Stack

B

D

F

Depth-first search

A B

D E

C

F

Stack

B

D

Depth-first search

A B

D E

C

F

Stack

B

D

Depth-first search

A B

D E

C

F

Stack

B

Depth-first search

A B

D E

C

F

Stack

B

Depth-first search

A B

D E

C

F

Stack

Depth-first search

A B

D E

C

F

Stack

Iterative DFS

DFS(Node v, Set<Node> visited) {
 Create a Stack<Node> of nodes to visit;
 Add v to the stack;

 while (The stack is not empty) {
 Pop a node from the stack, let it be u;

 if (u has been visited) continue;
 Add u to the visited set;

 for (Node w connected to u)
 Push w onto the stack;
 }
}

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Graph Search Trees

Mazes as Graphs

Mazes as Graphs

Mazes as Graphs

Mazes as Graphs

Creating a Maze with DFS

● Create a grid graph of the appropriate
size.

● Starting at any node, run a depth-first
search, adding the arcs to the stack in
random order.

● The resulting DFS tree is a maze with
one solution.

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

Stack

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

Stack

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

A

B

C

Stack

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

A

B

C

Stack

C

B

A

Problems with DFS

● Useful when trying to explore everything.
● Not good at finding specific nodes.

A

B

C

Stack

C

B

A

Breadth-First Search

Breadth-First Search

● Specialization of the general search
algorithm where nodes to visit are put
into a queue.

● Explores nodes one hop away, then two
hops away, etc.

● Finds path with fewest edges from start
node to all other nodes.

Breadth-first search

A B

D E

C

F

Breadth-first search

A B

D E

C

F

Queue

Breadth-first search

A B

D E

C

F

Queue A

Breadth-first search

A B

D E

C

F

Queue

Breadth-first search

A B

D E

C

F

Queue B E

Breadth-first search

A B

D E

C

F

Queue B E

Breadth-first search

A B

D E

C

F

Queue E

Breadth-first search

A B

D E

C

F

Queue E C

Breadth-first search

A B

D E

C

F

Queue E C

Breadth-first search

A B

D E

C

F

Queue C

B

Breadth-first search

A B

D E

C

F

Queue C D F

B

Breadth-first search

A B

D E

C

F

Queue C D F

B

Breadth-first search

A B

D E

C

F

Queue D F

B

E

Breadth-first search

A B

D E

C

F

Queue D F

B

E

Breadth-first search

A B

D E

C

F

Queue F

B

E

C

Breadth-first search

A B

D E

C

F

Queue F

B

E

C

Breadth-first search

A B

D E

C

F

Queue

B

E

C

D

Breadth-first search

A B

D E

C

F

Queue

B

E

C

D

Implementing BFS

BFS(Node v, Set<Node> visited) {
 Create a Queue<Node> of nodes to visit;
 Add v to the queue;

 while (The queue is not empty) {
 Dequeue a node from the queue, let it be u;

 if (u has been visited) continue;
 Add u to the visited set;

 for (Node w connected to u)
 Enqueue w in the queue;
 }
}

CAT SAT RAT

RANMAN

MAT

CAN

Classic Graph Algorithms

Graph Coloring

● Given a graph G, assign colors to the nodes so
that no edge has endpoints of the same color.

● The chromatic number of a graph is the
fewest number of colors needed to color it.

Graph Coloring is Useful

Graph Coloring is Useful

Graph Coloring is Useful

Graph Coloring is Useful

Graph Coloring is Useful

Graph Coloring is Useful

Graph Coloring is Useful

Graph Coloring is Useful

Graph Coloring is Hard.

● No efficient algorithms are known for
determining whether a graph can be
colored with k colors for any k > 2.

● Want $1,000,000? Find a polynomial-
time algorithm or prove that none
exists.

Next Time

● More Graphs
● Representing graphs with extra information.
● Dijkstra's algorithm.
● Kruskal's algorithm.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145

