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Insertion Order Matters

● Suppose we create a BST of numbers in 
this order:

4, 2, 1, 3, 6, 5, 7
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Tree Terminology

● The height of a tree is the number of 
nodes in the longest path from the root 
to a leaf.
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Keeping the Height Low

● Almost all BST operations have time 
complexity based on height:
● Insertion: O(h)
● Search: O(h)
● Deletion: O(h)

● Keeping the height low will make these 
operations much more efficient.

● How do we do this?



  

Tree Rotations

● One common way of keeping tree heights 
low is to reshape the BST when it gets 
too high.

● One way to accomplish this is a tree 
rotation, which locally rearranges 
nodes.



  

Tree Rotations
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Let's Code it Up!



  

When to Rotate?

● The actual code for rotations is not too 
complex.

● Deciding when and where to rotate the tree, on 
the other hand, is a bit involved.

● There are many schemes we can use to 
determine this:
● AVL trees maintain balance information in each 

node, then rotate when the balance is off.
● Red/Black trees assign each node a color, then 

rotate when certain color combinations occur.



  

An Interesting Observation



  

Random Binary Search Trees

● If we build a binary search tree with totally 
random values, the resulting tree is (with high 
probability) within a constant factor of 
balanced.
● Approximately 4.3 ln n

● Moreover, the average depth of a given node is 
often very low.
● Approximately 2 ln n.

● If we structure the BST as if it were a random 
tree, we get (with high probability) a very good 
data structure!



  

Treaps

● A treap is a data structure that combines a binary 
search tree and a binary heap.

● Each node stores two pieces of information:
● The piece of information that we actually want to 

store, and
● A random real number.

● The tree is stored such that
● The nodes are a binary search tree when looking up 

the information, and
● The nodes are a binary heap with respect to the 

random real number.
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Treaps are Wonderful

● With very high probability, the height of 
an n-node treap is O(log n).

● Insertion is surprisingly simple once we 
have code for tree rotations.

● Deletion is straightforward once we have 
code for tree rotations.



  

Inserting into a Treap

● Insertion into a treap is a combination of 
normal BST insertion and heap insertion.

● First, insert the node doing a normal BST 
insertion.  This places the value into the 
right place.

● Next, bubble the node upward in the tree 
by rotating it with its parent until its 
value is smaller than its parent.



  

Ibex

Dikdik

Cat

Sloth

Dog Puppy

314

106

4 42 178

271



  

Ibex

Dikdik

Cat

Sloth

Dog Puppy

Kitty

314

106

4 42

571

178

271



  

Ibex

Dikdik

Cat

Sloth

Dog

Puppy

Kitty

314

106

4 42 571

178

271



  

Ibex

Dikdik

Cat SlothDog

Puppy

Kitty

314

106

4 42

571

178

271



  

Ibex

Dikdik

Cat

Sloth

Dog
Puppy

Kitty

314

106

4 42

571

178

271



  

Let's Code it Up!



  

Removing from a Treap

● In general, removing a node from a BST is quite 
difficult because we have to make sure not to lose 
any nodes.

● For example, how do you remove the root of this 
tree?

● However, removing leaves is very easy, since they 
have no children.
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Removing from a Treap

● It would seem that, since a treap has 
extra structure on top of that of a BST, 
that removing from a treap would be 
extremely hard.

● However, it's actually quite simple:
● Keep rotating the node to delete with its 

larger child until it becomes a leaf.
● Once the node is a leaf, delete it.
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Summary of Treaps

● Treaps give a (reasonably) 
straightforward way to guarantee that 
the height of a BST is not too great.

● Insertion into a treap is similar to 
insertion into a BST followed by insertion 
into a binary heap.

● Deletion from a treap is similar to the 
bubble-down step from a heap.

● All operations run in expected O(log n) 
time.



  

A Survey of Other Data Structures



  

Data Structures so Far

● We have seen many data structures over 
the past few weeks:
● Dynamic arrays.
● Linked lists.
● Hash tables.
● Tries.
● Binary search trees (and treaps).
● Binary heaps.

● These are the most-commonly-used data 
structures for general data storage.



  

Specialized Data Structures

● For applications that manipulate specific 
types of data, other data structures exist 
that make certain operations surprisingly 
fast and efficient.

● Many critical applications of computers 
would be impossible without these data 
structures.



  

k-d Trees



  

Suppose that you want to efficiently
store points in k-dimensional space.

How might you organize the
data to efficiently query for

points within a region?
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The Intuition
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Key Idea: Split Space in Half
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Nearest-Neighbor Lookup
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k-d Trees

● Assuming the points are nicely 
distributed, nearest-neighbor searches in 
k-d trees can run faster than O(n) time.

● Applications in computational geometry 
(collision detection), machine learning 
(nearest-neighbor classification), and 
many other places.



  

Suffix Trees



  

String Processing

● In computational biology, strings are 
enormously useful for storing DNA and 
RNA.

● Many important questions in biology can 
be addressed through string processing:
● What is the most plausible evolutionary 

history of the following genomes?
● Are there particular gene sequences that 

appear with high frequency within a 
genome?



  

Suffix Trees

● A suffix tree is a (slightly modified) trie 
that stores all suffixes of a string S.

● Here is the suffix tree for “dikdik;” the $ 
is a marker for “end-of-string.”
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Suffix Trees

● Important, nontrivial, nonobvious fact: A suffix 
tree for a string of n characters can be built in 
time O(n).

● Given a string of length m, we can determine 
whether it is a substring of the original string in 
time O(m).
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Suffix Trees

● Other applications of suffix trees:
● Searching for one genome within another 

allowing for errors, insertions, and deletions 
in time O(n + m).

● Finding the longest common substring of two 
sequences in time O(n + m).

● Improving the performance of data 
compression routines by finding long 
repeated strings efficiently.



  

Bloom Filters



  

Distributing Data

● Websites like Google and Facebook deal 
with enormous amounts of data.

● Probably measured in hundreds of 
millions of gigabytes (hundreds of 
petabytes).

● There is absolutely no way to store this 
on one computer.

● Instead, data must be stored on multiple 
computers networked together.



  

Looking up Data

● Suppose you are at Google implementing 
search.

● When you get a search query, you have to 
be able to know which computer knows 
what pages to display for that query.

● Network latency is, say, 2ms between 
you and each computer.

● If you have one thousand computers to 
search, you can't just query each one and 
ask.



  

Bloom Filters

● A Bloom filter is a data structure 
similar to a set backed by a hash table.

● Stores a set of values in a way that may 
lead to false positives:
● If the Bloom filter says that an object is not 

present, it is definitely not present.
● If the Bloom filter says that an object is 

present, it may actually not be present.
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Bloom Filters and Networks

● Bloom filters can be used to mitigate the 
networking problem from earlier.

● Have each computer store a Bloom filter of 
what's stored on each other computer.

● To determine which computer has some data:
● Look up that value in each Bloom filter.
● Call up just the computers that might have it.

● Since Bloom filter lookup is substantially faster 
than a network query (probably 1000-10,000x), 
this solution is used extensively in practice.



  

Data structures make it possible to
solve important problems at scale.

You get to decide which problems
we'll be using them for.
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