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YEAH Hours

● YEAH Hours for Priority Queue are 
tomorrow from 4:15 – 5:45PM, 380-380C.

● Learn more about priority queues and 
linked lists!

● Get pointers about the trickier parts of 
the assignment.



  

The Story So Far

● We have now seen two approaches to 
implementing collections classes:
● Dynamic arrays: allocating space and 

doubling it as needed.
● Linked lists: Allocating small chunks of 

space one at a time.

● These approaches are good for linear 
structures, where the elements are 
stored in some order.



  

Associative Structures

● Not all structures are linear.

● How do we implement Map, Set, and Lexicon?

● There are many options, as you'll see in the 
next two weeks:
● Hash tables.
● Binary search trees.
● Tries.
● DAWGs.

● Today we will focus on implementing Map.



  

An Initial Implementation

● One simple implementation of Map would be to 
store an array of key/value pairs.

● To look up the value associated with a key, scan 
across the array and see if it is present.

● To insert a key/value pair, check if the key is 
mapped.  If so, update it.  If not, add a new 
key/value pair.
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Analyzing this Approach

● What is the big-O time complexity of 
inserting a value?

● Answer: O(n).
● What is the big-O time complexity of 

looking up a value?
● Answer: O(n).



  

Knowing Where to Look

● Our linked-list Stack implementation has 
O(1) push, pop, and top.

● Why is this?
● Know exactly where to look to find or 

insert a value.
● Queue implementation was O(n) for 

enqueue, but was improved to O(1) by 
adding extra information about where to 
insert.



  

Knowing Where to Look

● Our Vector supports O(1) lookups 
anywhere, even if there are n elements.

● Why is this?
● Know exactly where to look to find it.
● It's at position n in the array.



  

An Example: Clothes



  

For Large Values of n



  

Overview of Our Approach

● To store key/value pairs efficiently, we 
will do the following:
● Create a lot of buckets into which key/value 

pairs can be distributed.
● Choose a rule for assigning specific keys into 

specific buckets.
● To look up the value associated with a key:

– Jump into the bucket containing that key.
– Look at all the values in the bucket until you find 

the one associated with the key.



  

Overview of Our Approach
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Hashing

● The rule we use to associate keys (in our 
case, strings) with specific buckets is 
called a hash function.

● Data structures that distribute items 
using a hash function are called hash 
tables.



  

Distributing Keys

● When distributing keys into buckets, we want the 
distribution to be as random as possible.

● Best-case: totally even spread.

● Worst-case: everything bunched up.
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Distributing Keys

● We want to choose a function that will 
distribute elements as randomly as 
possible to try to guarantee a nice, even 
spread.

● We can't actually distribute them 
randomly.
● Why not?

● Instead, we need a function that will 
really scramble things up.



  

Avoid Simple Distributions

● Suppose you want to build a hash 
function for names.

● Earlier, we tried doing this by first letter.
● This is not a very good idea.



  

CS106B Name Distributions
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Benford's Law

http://en.wikipedia.org/wiki/File:Benfords_law_illustrated_by_world%27s_countries_population.png



  

Benford's Law

http://en.wikipedia.org/wiki/File:Benford-physical.svg



  

Building a Better Hash Function

● Designing good hash functions requires a level 
of mathematical sophistication far beyond the 
scope of this course.
● Take CS161 for details!

● Generally, hash functions work as follows:
● Scramble the input up in a way that converts it 

to a positive integer.
● Using the % operator, wrap the value from a 

positive integer to something in the range of 
buckets.



  

Good Hash Functions

● A good hash function typically will scramble all 
of the bits of the input together in a way that 
appears totally random.

● Hence the name “hash function.”



  

Some Interesting Numbers

● For 300 students and 26 buckets, given 
an optimal distribution of names into 
buckets, an average of 5.77 lookups are 
needed.

● Using first letter of first name: an 
average of 9.56 lookups are needed.

● Using the SAX hash function: an average 
of 6.17 lookups are needed.

● That's 50% faster than by first letter!



  

Hash Table Performance

● Suppose that we have n elements and m 
buckets.

● Assuming a good hash function, the 
expected time to look up an element is 
O(1 + n/m).

● The ratio n/m is called the load factor.
● If we add buckets when the number of 

elements is large, we keep the load 
factor low.



  

Hashing and Rehashing
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Hashing and Rehashing

● Idea: Track the number of buckets m and 
the number of total elements n.

● When inserting, if n/m exceeds some 
value (say, 2), double the number of 
buckets and redistribute the elements 
evenly.

● This makes n/m ≤ 2, so the expected 
lookup time in a hash table is O(1).



  

Putting it together: Building HashMap
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