

Hashing

Apply to Section Lead!

http://cs198.stanford.edu

http://cs198.stanford.edu/

YEAH Hours

● YEAH Hours for Priority Queue are
tomorrow from 4:15 – 5:45PM, 380-380C.

● Learn more about priority queues and
linked lists!

● Get pointers about the trickier parts of
the assignment.

The Story So Far

● We have now seen two approaches to
implementing collections classes:
● Dynamic arrays: allocating space and

doubling it as needed.
● Linked lists: Allocating small chunks of

space one at a time.

● These approaches are good for linear
structures, where the elements are
stored in some order.

Associative Structures

● Not all structures are linear.

● How do we implement Map, Set, and Lexicon?

● There are many options, as you'll see in the
next two weeks:
● Hash tables.
● Binary search trees.
● Tries.
● DAWGs.

● Today we will focus on implementing Map.

An Initial Implementation

● One simple implementation of Map would be to
store an array of key/value pairs.

● To look up the value associated with a key, scan
across the array and see if it is present.

● To insert a key/value pair, check if the key is
mapped. If so, update it. If not, add a new
key/value pair.

Kitty

Awww...

Puppy

Cute!

Ibex

Huggable

Dikdik

Yay!

An Initial Implementation

● One simple implementation of Map would be to
store an array of key/value pairs.

● To look up the value associated with a key, scan
across the array and see if it is present.

● To insert a key/value pair, check if the key is
mapped. If so, update it. If not, add a new
key/value pair.

Kitty

Awww...

Puppy

Cute!

Ibex

Huggable

Dikdik

Yay!

Hagfish

Ewww..

An Initial Implementation

● One simple implementation of Map would be to
store an array of key/value pairs.

● To look up the value associated with a key, scan
across the array and see if it is present.

● To insert a key/value pair, check if the key is
mapped. If so, update it. If not, add a new
key/value pair.

Kitty

Awww...

Puppy

Really
Cute!

Ibex

Huggable

Dikdik

Yay!

Hagfish

Ewww..

Analyzing this Approach

● What is the big-O time complexity of
inserting a value?

● Answer: O(n).
● What is the big-O time complexity of

looking up a value?
● Answer: O(n).

Knowing Where to Look

● Our linked-list Stack implementation has
O(1) push, pop, and top.

● Why is this?
● Know exactly where to look to find or

insert a value.
● Queue implementation was O(n) for

enqueue, but was improved to O(1) by
adding extra information about where to
insert.

Knowing Where to Look

● Our Vector supports O(1) lookups
anywhere, even if there are n elements.

● Why is this?
● Know exactly where to look to find it.
● It's at position n in the array.

An Example: Clothes

For Large Values of n

Overview of Our Approach

● To store key/value pairs efficiently, we
will do the following:
● Create a lot of buckets into which key/value

pairs can be distributed.
● Choose a rule for assigning specific keys into

specific buckets.
● To look up the value associated with a key:

– Jump into the bucket containing that key.
– Look at all the values in the bucket until you find

the one associated with the key.

Overview of Our Approach

A – D E – H I – L Q – T Y – ZM – P U – X

Harry

Hermione

RonDumbledore

Hagrid

Voldemort

SnapeDraco

MinervaLily

Hashing

● The rule we use to associate keys (in our
case, strings) with specific buckets is
called a hash function.

● Data structures that distribute items
using a hash function are called hash
tables.

Distributing Keys

● When distributing keys into buckets, we want the
distribution to be as random as possible.

● Best-case: totally even spread.

● Worst-case: everything bunched up.

Distributing Keys

● When distributing keys into buckets, we want the
distribution to be as random as possible.

● Best-case: totally even spread.

● Worst-case: everything bunched up.

Distributing Keys

● We want to choose a function that will
distribute elements as randomly as
possible to try to guarantee a nice, even
spread.

● We can't actually distribute them
randomly.
● Why not?

● Instead, we need a function that will
really scramble things up.

Avoid Simple Distributions

● Suppose you want to build a hash
function for names.

● Earlier, we tried doing this by first letter.
● This is not a very good idea.

CS106B Name Distributions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

5

10

15

20

25

30

35

By first letter of first name

Benford's Law

http://en.wikipedia.org/wiki/File:Benfords_law_illustrated_by_world%27s_countries_population.png

Benford's Law

http://en.wikipedia.org/wiki/File:Benford-physical.svg

Building a Better Hash Function

● Designing good hash functions requires a level
of mathematical sophistication far beyond the
scope of this course.
● Take CS161 for details!

● Generally, hash functions work as follows:
● Scramble the input up in a way that converts it

to a positive integer.
● Using the % operator, wrap the value from a

positive integer to something in the range of
buckets.

Good Hash Functions

● A good hash function typically will scramble all
of the bits of the input together in a way that
appears totally random.

● Hence the name “hash function.”

Some Interesting Numbers

● For 300 students and 26 buckets, given
an optimal distribution of names into
buckets, an average of 5.77 lookups are
needed.

● Using first letter of first name: an
average of 9.56 lookups are needed.

● Using the SAX hash function: an average
of 6.17 lookups are needed.

● That's 50% faster than by first letter!

Hash Table Performance

● Suppose that we have n elements and m
buckets.

● Assuming a good hash function, the
expected time to look up an element is
O(1 + n/m).

● The ratio n/m is called the load factor.
● If we add buckets when the number of

elements is large, we keep the load
factor low.

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Hagrid Snape

Draco Minerva

Lily

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Hagrid

Voldemort

Snape

Draco Minerva

Lily

Hashing and Rehashing

0 1 2

Harry Hermione

Ron

Dumbledore Hagrid

Voldemort

Snape

Draco

Minerva Lily

3 4 5 6

Hashing and Rehashing

0 1 2

Harry Hermione

Ron

Dumbledore Hagrid

Voldemort

Snape

Draco

Minerva Lily

3 4 5 6

Hashing and Rehashing

● Idea: Track the number of buckets m and
the number of total elements n.

● When inserting, if n/m exceeds some
value (say, 2), double the number of
buckets and redistribute the elements
evenly.

● This makes n/m ≤ 2, so the expected
lookup time in a hash table is O(1).

Putting it together: Building HashMap

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

