Linked Lists

Part Two

Recursion is Awesome

http://recursivedrawing.com/

Friday Four Square! 4:15PM, Outside Gates

Apply to Section Lead!

http://cs198.stanford.edu

Announcements

- Assignment 4 due right now.
- Assignment 5 (**Priority Queue**) out today, due Wednesday, May 23
 - Implement a powerful collection class.
 - Master dynamic allocation and linked lists.
 - YEAH hours next Tuesday from 4:15 5:45 in 380-380C.

- A linked list is a data structure for storing a sequence of elements.
- Each element is stored separately from the rest.
- The elements are then chained together into a sequence.

- A linked list is a data structure for storing a sequence of elements.
- Each element is stored separately from the rest.
- The elements are then chained together into a sequence.

- A linked list is a data structure for storing a sequence of elements.
- Each element is stored separately from the rest.
- The elements are then chained together into a sequence.

- A linked list is a data structure for storing a sequence of elements.
- Each element is stored separately from the rest.
- The elements are then chained together into a sequence.

- A linked list is a data structure for storing a sequence of elements.
- Each element is stored separately from the rest.
- The elements are then chained together into a sequence.

- A linked list is a data structure for storing a sequence of elements.
- Each element is stored separately from the rest.
- The elements are then chained together into a sequence.

Linked List Cells

- A linked list is a chain of cells.
- Each cell contains two pieces of information:
 - Some piece of data that is stored in the sequence, and
 - A link to the next cell in the list.
- We can traverse the list by starting at the first cell and repeatedly following its link.

Representing a Cell

- For simplicity, let's assume we're building a linked list of **strings**.
- We can represent a cell in the linked list as a structure:

```
struct Cell {
    string value;
    Cell* next;
};
```

The structure is defined recursively!

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
    /* ... use ptr ... */
}
```



```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
     /* ... use ptr ... */
    ptr
list
```

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
     /* ... use ptr ... */
    ptr
list
```

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
     /* ... use ptr ... */
    ptr
list
```

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
     /* ... use ptr ... */
    ptr
list
```

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
     /* ... use ptr ... */
    ptr
list
```

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
     /* ... use ptr ... */
list
```

A Recursive View of Linked Lists

- We can think of linked lists recursively.
- The empty list of no cells (represented by a **NULL** pointer) is a linked list.
- A linked list cell followed by a linked list is a linked list.

Once More With Recursion

 Linked lists are defined recursively, and we can traverse them using recursion!

```
void recursiveTraverse(Cell* list) {
   if (list == NULL) return;
   /* ... do something with list ... */
   recursiveTraverse(list->next);
}
```

- All good things must come to an end, and we eventually need to reclaim the memory for a linked list.
- The following is an Extremely Bad Idea:

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
   delete ptr;
}
```

- All good things must come to an end, and we eventually need to reclaim the memory for a linked list.
- The following is an Extremely Bad Idea:

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
    delete ptr;
}
```

- All good things must come to an end, and we eventually need to reclaim the memory for a linked list.
- The following is an Extremely Bad Idea:

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
   delete ptr;
}
```


- All good things must come to an end, and we eventually need to reclaim the memory for a linked list.
- The following is an Extremely Bad Idea:

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
    delete ptr;
}
```


- All good things must come to an end, and we eventually need to reclaim the memory for a linked list.
- The following is an Extremely Bad Idea:

```
for (Cell* ptr = list; ptr != NULL; ptr = ptr->next) {
    delete ptr;
}
```

Freeing a Linked List Properly

- To properly free a linked list, we have to be able to
 - Destroy a cell, and
 - Advance to the cell after it.
- How might we accomplish this?

Once More With Recursion

We can also deallocate lists recursively!

Base Case:

There is nothing to free in an empty list.

Recursive Case:

- Deallocate all cells after the current cell.
- Deallocate the current cell.

Linked Lists: The Tricky Parts

- Suppose that we want to write a function that will add an element to a linked list.
- What might this function look like?

What went wrong?

```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
```

```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
```

```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
list
```

```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
list
```

```
int main() {

void listInsert(Cell* list, int value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
}

list value 137
```

```
int main() {

void listInsert(Cell* list, int value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
}

list value 137
```

```
int main() {

void listInsert(Cell* list, int value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
}

newCell list value 137
```



```
int main() {
   void listInsert(Cell* list, int value) {
       Cell* newCell = new Cell;
       newCell->value = value;
       newCell->next = list;
       list = newCell;
                                           value 137
    newCell
                        list
                           ???
```

```
int main() {
   void listInsert(Cell* list, int value) {
       Cell* newCell = new Cell;
       newCell->value = value;
       newCell->next = list;
       list = newCell;
                                           value 137
    newCell
                        list
                           ???
```

```
int main() {
   void listInsert(Cell* list, int value) {
       Cell* newCell = new Cell;
       newCell->value = value;
       newCell->next = list;
       list = newCell;
                                           value 137
    newCell
                        list
                           ???
```

```
int main() {
   void listInsert(Cell* list, int value) {
       Cell* newCell = new Cell;
       newCell->value = value;
       newCell->next = list;
       list = newCell;
                                           value 137
    newCell
                        list
```

```
int main() {
   void listInsert(Cell* list, int value) {
       Cell* newCell = new Cell;
       newCell->value = value;
       newCell->next = list;
       list = newCell;
                                           value 137
    newCell
                        list
```



```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
list
```


Pointers by Reference

- In order to resolve this problem, we must pass the linked list pointer by reference.
- Our new function:

```
void listInsert(Cell*& list, int value) {
    Cell* newCell = new Cell;
    cell->value = value;
    cell->next = list;
    list = cell;
}
```

Pointers by Reference

- In order to resolve this problem, we must pass the linked list pointer by reference.
- Our new function:

```
void listInsert(Cell*& list, int value) {
    Cell* newCell = new Cell;
    cell->value = value;
    cell->next = list;
    list = cell;
}
```

```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
```

```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
```

```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
list
```

```
int main() {
    Cell* list = NULL;
    ListInsert(list, 137);
    ListInsert(list, 42);
    ListInsert(list, 271);
}
list
```


- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

Reimplementing Stack

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

Reimplementing Stack

- We have already seen one way to implement the stack (dynamic arrays).
- We can also implement a stack efficiently using a linked list.
- **Push**: Prepend a new cell to the front of the list.
- Pop: Remove the first cell of the list.

Analyzing our Stack

- Push and pop are now worst-case O(1) instead of average-case O(1).
- What about the total runtime?

Analyzing our Stack

- Push and pop are now worst-case O(1) instead of average-case O(1).
- What about the total runtime?
- Slower than before.
- Why?
 - Cost of allocating individual linked list cells exceeds cost of allocating very few blocks and copying values over.
 - Trade average-case for worst-case speed.

 We can also implement the queue using a linked list.

- To enqueue, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

 We can also implement the queue using a linked list.

- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

 We can also implement the queue using a linked list.

- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

 We can also implement the queue using a linked list.

- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

 We can also implement the queue using a linked list.

- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

 We can also implement the queue using a linked list.

- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

 We can also implement the queue using a linked list.

- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

 We can also implement the queue using a linked list.

- To enqueue, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

 We can also implement the queue using a linked list.

- To enqueue, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.

Analyzing Efficiency

- What is the big-O complexity of a dequeue?
- Answer: **O(1)**.
- What is the big-O complexity of an enqueue?
- Answer: O(n).

Improving Efficiency

- The O(n) work in enqueue comes from scanning the list to find the end.
- **Idea**: What if we just stored a pointer to the very last cell in the list?
- Can immediately jump to the end to append a value.

Analyzing Efficiency

- What is the big-O complexity of a dequeue?
- Answer: **O(1)**.
- What is the big-O complexity of an enqueue?
- Answer: **O(1)**.

The Takeaway Point

- You can have multiple pointers into the same linked list.
- This makes it possible to efficiently insert values at multiple places in the list.

Next Time

Implementing Maps

- Implementation strategies
- Hashing
- Building a hash table