Linked Lists

Part Two



Recursion 1s Awesome

http://recursivedrawing.com/


http://recursivedrawing.com/

Friday Four Square!
4:15PM, Outside Gates



Apply to Section Lead!

http://cs198.stanford.edu


http://cs198.stanford.edu/

Announcements

« Assignment 4 due right now.

« Assignment 5 (Priority Queue) out
today, due Wednesday, May 23

 Implement a powertful collection class.
 Master dynamic allocation and linked lists.

 YEAH hours next Tuesday from 4:15 - 5:45
in 380-380C.



Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

B 2 3
B




Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

11 2 3 4
T2




Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

11 2 3 4
BB




Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

N 2 3 4




Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

B 2 137 3 4
BB R




Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

= 137] 1 3 4
R f/‘




[Linked List Cells

A linked list is a chain of cells.

« Each cell contains two pieces of
information:

« Some piece of data that is stored in the
sequence, and

e A link to the next cell in the list.

 We can traverse the list by starting at the
first cell and repeatedly following its link.



Representing a Cell

» For simplicity, let's assume we're building a
linked list of strings.

 We can represent a cell in the linked list as a
structure:

struct Cell {
string wvalue;
Cell* next;
};
 The structure is defined recursively!



Traversing a Linked List

* Once we have a linked list, we can
traverse it by following the links one at a
time.
for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({

/* .. use ptr .. */
}

TH BB
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A Recursive View of Linked Lists

 We can think of linked lists recursively.

 The empty list of no ce.

Is (represented by

a NULL pointer) is a linked list.

« A linked list cell followed by a linked list
is a linked list.
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Once More With Recursion

« Linked lists are defined recursively, and
we can traverse them using recursion!

void recursiveTraverse (Cell* list) {
i1f (list == NULL) return;
/* .. do something with list .. */

recursiveTraverse (list->next) ;



Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the
memory for a linked list.

 The following is an Extremely Bad Idea:

for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({
delete ptr;

}
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Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the
memory for a linked list.

 The following is an Extremely Bad Idea:
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delete ptr;
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Freeing a Linked List Properly

« To properly free a linked list, we have to
be able to

« Destroy a cell, and
« Advance to the cell after it.

« How might we accomplish this?



Once More With Recursion

 We can also deallocate lists recursively!
« Base Case:

 There is nothing to free in an empty list.
 Recursive Case:

e Deallocate all cells after the current cell.
e Deallocate the current cell.



Linked Lists: The Tricky Parts

 Suppose that we want to write a function
that will add an element to a linked list.

 What might this function look like?



What went wrong?



int main() {
Cell* list = NULL;
ListInsert(list, 137);
ListInsert(list, 42);
ListInsert(list, 271);
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Pointers by Retference

e In order to resolve this problem, we must pass
the linked list pointer by reference.

* Our new function:
void listInsert(Cell*& list, int value) {
Cell* newCell = new Cell;
cell->value = value;
cell->next = list;

list = cell;
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Reimplementing Stack

« We have already seen one way to
implement the stack (dynamic arrays).

« We can also implement a stack efficiently
using a linked list.

 Push: Prepend a new cell to the front of
the list.

 Pop: Remove the first cell of the list.
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Analyzing our Stack

 Push and pop are now worst-case O(1)
instead of average-case O(1).

« What about the total runtime?



Analyzing our Stack

 Push and pop are now worst-case O(1)
instead of average-case O(1).

« What about the total runtime?

e Slower than before.
« Why?

* Cost of allocating individual linked list cells
exceeds cost of allocating very few blocks
and copying values over.

« Trade average-case for worst-case speed.



Implementing Queue

 We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.



Implementing Queue

 We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.




Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

1 Jv 2




Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

1f2f}1




Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

ZIS




Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the

= B




Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

3I4




Implementing Queue

 We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.




Implementing Queue

 We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.



Analyzing Efficiency

 What is the big-O complexity of a
dequeue?

« Answer: O(1).

 What is the big-O complexity of an
enqueue?

« Answer: O(n).



Improving Efficiency

 The O(n) work in enqueue comes from
scanning the list to find the end.

 Idea: What if we just stored a pointer to
the very last cell in the list?

 Can immediately jump to the end to
append a value.



Analyzing Efficiency

 What is the big-O complexity of a
dequeue?

« Answer: O(1).

 What is the big-O complexity of an
enqueue?

« Answer: O(1).



The Takeaway Point

* You can have multiple pointers into the
same linked list.

« This makes it possible to efficiently insert
values at multiple places in the list.



Next Time

 Implementing Maps
 Implementation strategies
« Hashing
« Building a hash table
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