Linked Lists

Part Two

Recursion 1s Awesome

http://recursivedrawing.com/

http://recursivedrawing.com/

Friday Four Square!
4:15PM, Outside Gates

Apply to Section Lead!

http://cs198.stanford.edu

http://cs198.stanford.edu/

Announcements

« Assignment 4 due right now.

« Assignment 5 (Priority Queue) out
today, due Wednesday, May 23

 Implement a powertful collection class.
 Master dynamic allocation and linked lists.

 YEAH hours next Tuesday from 4:15 - 5:45
in 380-380C.

Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

B 2 3
B

Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

11 2 3 4
T2

Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

11 2 3 4
BB

Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

N 2 3 4

Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

B 2 137 3 4
BB R

Linked Lists at a Glance

* A linked list is a data structure for
storing a sequence of elements.

 Each element is stored separately from
the rest.

 The elements are then chained together
Into a sequence.

= 137] 1 3 4
R f/‘

[Linked List Cells

A linked list is a chain of cells.

« Each cell contains two pieces of
information:

« Some piece of data that is stored in the
sequence, and

e A link to the next cell in the list.

 We can traverse the list by starting at the
first cell and repeatedly following its link.

Representing a Cell

» For simplicity, let's assume we're building a
linked list of strings.

 We can represent a cell in the linked list as a
structure:

struct Cell {
string wvalue;
Cell* next;
};
 The structure is defined recursively!

Traversing a Linked List

* Once we have a linked list, we can
traverse it by following the links one at a
time.
for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({

/* .. use ptr .. */
}

TH BB

Traversing a Linked List

* Once we have a linked list, we can
traverse it by following the links one at a
time.
for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({

/* .. use ptr .. */

TH BB

Traversing a Linked List

* Once we have a linked list, we can
traverse it by following the links one at a
time.
for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({

/* .. use ptr .. */

TH BB

Traversing a Linked List

* Once we have a linked list, we can
traverse it by following the links one at a
time.
for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({

/* .. use ptr .. */

TH BB

Traversing a Linked List

* Once we have a linked list, we can
traverse it by following the links one at a
time.
for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({

/* .. use ptr .. */

TH BB

Traversing a Linked List

* Once we have a linked list, we can
traverse it by following the links one at a
time.
for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({

/* .. use ptr .. */

ptr i

TH BB

Traversing a Linked List

* Once we have a linked list, we can
traverse it by following the links one at a
time.
for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({

/* .. use ptr .. */

TH BB

A Recursive View of Linked Lists

 We can think of linked lists recursively.

 The empty list of no ce.

Is (represented by

a NULL pointer) is a linked list.

« A linked list cell followed by a linked list
is a linked list.

list

>

S

S

I

Once More With Recursion

« Linked lists are defined recursively, and
we can traverse them using recursion!

void recursiveTraverse (Cell* list) {
i1f (list == NULL) return;
/* .. do something with list .. */

recursiveTraverse (list->next) ;

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the
memory for a linked list.

 The following is an Extremely Bad Idea:

for (Cell* ptr = list; ptr '= NULL; ptr = ptr->next) ({
delete ptr;

}

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the
memory for a linked list.

 The following is an Extremely Bad Idea:

for (ptr = ptr->next) {
delete ptr;

}

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the
memory for a linked list.

 The following is an Extremely Bad Idea:

for (ptr = ptr->next) {

delete ptr;
}

>

tr
= 2

S

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the
memory for a linked list.

 The following is an Extremely Bad Idea:

for (ptr = ptr->next) {
delete ptr;

}

ptr

>

S

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the
memory for a linked list.

 The following is an Extremely Bad Idea:

for (ptr = ptr->next) {
delete ptr;

PEr . 297

Freeing a Linked List Properly

« To properly free a linked list, we have to
be able to

« Destroy a cell, and
« Advance to the cell after it.

« How might we accomplish this?

Once More With Recursion

 We can also deallocate lists recursively!
« Base Case:

 There is nothing to free in an empty list.
 Recursive Case:

e Deallocate all cells after the current cell.
e Deallocate the current cell.

Linked Lists: The Tricky Parts

 Suppose that we want to write a function
that will add an element to a linked list.

 What might this function look like?

What went wrong?

int main() {
Cell* list = NULL;
ListInsert(list, 137);
ListInsert(list, 42);
ListInsert(list, 271);

int main() {
Cell* 1list = NULL;

ListInsert(list, 137);
ListInsert(list, 42);
ListInsert(list, 271);

int main() {
Cell* 1list = NULL;
ListInsert(list, 137);
ListInsert(list, 42);
ListInsert(list, 271);

list M

int main() {
Cell* list = NULL;
ListInsert(list, 137):
ListInsert(list, 42);
ListInsert(list, 271);

list M

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value = value;

} newCell->next = list;

list = newCell;

list M

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value = value;

} newCell->next = list;

list = newCell;

list M

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value = value;

} newCell->next = list;

list = newCell;

newCell list M

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value = value;

} newCell->next = list;

list = newCell;

newCell list M

— ?777?

??7?

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value value;

} newCell->next = list;

list = newCell;

newCell list M

— ?777?

??7?

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value value;

} newCell->next = list;

list = newCell;

newCell list M

— 137

??7?

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value = value;

} newCell->next = list;

list = newCell;

newCell list M

— 137

??7?

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value = value;

} newCell->next = list;

list = newCell;

newCell list M

— 137

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value = value;

} newCell->next = list;

list = newCell;

newCell list M

— 137

int main() {

void listInsert(Cell* 1list, int value) {
Cell* newCell = new Cell;
newCell->value = value;

} newCell->next = list;

list = newCell;

newCell list value 1 37

— 137

int main() {
Cell* list = NULL;
ListInsert(list, 137):
ListInsert(list, 42);
ListInsert(list, 271);

list M

137

Pointers by Retference

e In order to resolve this problem, we must pass
the linked list pointer by reference.

* Our new function:
void listInsert(Cell*& list, int value) {
Cell* newCell = new Cell;
cell->value = value;
cell->next = list;

list = cell;

Pointers by Retference

e In order to resolve this problem, we must pass
the linked list pointer by reference.

e Our new function:
Cell*g list

int main() {
Cell* list = NULL;
ListInsert(list, 137);
ListInsert(list, 42);
ListInsert(list, 271);

int main() {
Cell* 1list = NULL;

ListInsert(list, 137);
ListInsert(list, 42);
ListInsert(list, 271);

int main() {
Cell* 1list = NULL;
ListInsert(list, 137);
ListInsert(list, 42);
ListInsert(list, 271);

list M

int main() {
Cell* list = NULL;
ListInsert(list, 137):
ListInsert(list, 42);
ListInsert(list, 271);

list M

int main() { .

Cell* list = _ _)
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list;
list = newCell;

137

int main() { .

Cell* list = _ _)
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list;
list = newCell;

137

int main() { .

Cell* list = _ _)
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list;
list = newCell;

1 37 newCell

int main() { .

Cell* list = _ _ _ _
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list;
list = newCell;

1 37 newCell

?2?7?7 |

227

int main() { .

Cell* list = _ _ _ _
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list;
list = newCell;

1 37 newCell

??7?7 |

227

int main() { .

Cell* list = _ _ _ _
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list;
list = newCell;

1 37 newCell

137 |«

227

int main() { .

Cell* list = _ _ _ _
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list:
list = newCell;

| value 137 newCell

137 |«

227

int main() { .

Cell* list = _ _ _ _
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list:
list = newCell;

| value 137 newCell

137

int main() { .

Cell* list = _ _ _ _
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list;
list = newCell;

1 37 newCell

137

int main() { .

Cell* list = _ _ _ _
ListInsert(lid void listInsert(Cell*& list, int value) {
ListInsert(li Cell* newCell = new Cell;
ListInsert(li newCell->value = value;

newCell->next = list;
list = newCell;

1 37 newCell

> 137

int main() {
Cell* 1list = NULL;
ListInsert(list, 137);

ListInsert(list, 42);
ListInsert(list, 271);

> 137

Reimplementing Stack

« We have already seen one way to
implement the stack (dynamic arrays).

« We can also implement a stack efficiently
using a linked list.

 Push: Prepend a new cell to the front of
the list.

 Pop: Remove the first cell of the list.

Reimplementing Stack

« We have already seen one way to
implement the stack (dynamic arrays).

« We can also implement a stack efficiently
using a linked list.

 Push: Prepend a new cell to the front of
the list.

 Pop: Remove the first cell of the list.

pa

Reimplementing Stack

« We have already seen one way to
implement the stack (dynamic arrays).

« We can also implement a stack efficiently
using a linked list.

 Push: Prepend a new cell to the front of
the list.

 Pop: Remove the first cell of the list.

2/)1

Reimplementing Stack

 We have already seen one way to

implement the s

« We can also imp!

using a linked list.

rack (dynamic arrays).
ement a stack efficiently

 Push: Prepend a new cell to the front of

the list.

 Pop: Remove the first cell of the list.

3

2

s

=

Reimplementing Stack

« We have already seen one way to
implement the stack (dynamic arrays).

« We can also implement a stack efficiently
using a linked list.

 Push: Prepend a new cell to the front of
the list.

 Pop: Remove the first cell of the list.

2/)1

Reimplementing Stack

 We have already seen one way to

implement the s

« We can also imp!

using a linked list.

rack (dynamic arrays).
ement a stack efficiently

 Push: Prepend a new cell to the front of

the list.

 Pop: Remove the first cell of the list.

4

2

s

=

Reimplementing Stack

 We have already seen one way to

implement the s
« We can also imp!

using a linked list.

rack (dynamic arrays).
ement a stack efficiently

 Push: Prepend a new cell to the front of

the list.

 Pop: Remove the first cell of the list.

5

4

s

2

s

=

Reimplementing Stack

 We have already seen one way to

implement the s

« We can also imp!

using a linked list.

rack (dynamic arrays).
ement a stack efficiently

 Push: Prepend a new cell to the front of

the list.

 Pop: Remove the first cell of the list.

4

2

s

=

Reimplementing Stack

« We have already seen one way to
implement the stack (dynamic arrays).

« We can also implement a stack efficiently
using a linked list.

 Push: Prepend a new cell to the front of
the list.

 Pop: Remove the first cell of the list.

2/)1

Reimplementing Stack

« We have already seen one way to
implement the stack (dynamic arrays).

« We can also implement a stack efficiently
using a linked list.

 Push: Prepend a new cell to the front of
the list.

 Pop: Remove the first cell of the list.

pa

Reimplementing Stack

« We have already seen one way to
implement the stack (dynamic arrays).

« We can also implement a stack efficiently
using a linked list.

 Push: Prepend a new cell to the front of
the list.

 Pop: Remove the first cell of the list.

Analyzing our Stack

 Push and pop are now worst-case O(1)
instead of average-case O(1).

« What about the total runtime?

Analyzing our Stack

 Push and pop are now worst-case O(1)
instead of average-case O(1).

« What about the total runtime?

e Slower than before.
« Why?

* Cost of allocating individual linked list cells
exceeds cost of allocating very few blocks
and copying values over.

« Trade average-case for worst-case speed.

Implementing Queue

 We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

Implementing Queue

 We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

1 Jv 2

Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

1f2f}1

Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

ZIS

Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the

= B

Implementing Queue

« We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

3I4

Implementing Queue

 We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

Implementing Queue

 We can also implement the queue using a
linked list.

e [dea:

 To enqueue, append a new cell to the end of
the list.

 To dequeue, remove the first cell from the
list.

Analyzing Efficiency

 What is the big-O complexity of a
dequeue?

« Answer: O(1).

 What is the big-O complexity of an
enqueue?

« Answer: O(n).

Improving Efficiency

 The O(n) work in enqueue comes from
scanning the list to find the end.

 Idea: What if we just stored a pointer to
the very last cell in the list?

 Can immediately jump to the end to
append a value.

Analyzing Efficiency

 What is the big-O complexity of a
dequeue?

« Answer: O(1).

 What is the big-O complexity of an
enqueue?

« Answer: O(1).

The Takeaway Point

* You can have multiple pointers into the
same linked list.

« This makes it possible to efficiently insert
values at multiple places in the list.

Next Time

 Implementing Maps
 Implementation strategies
« Hashing
« Building a hash table

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

