
  

Implementing Abstractions



  

Pointers

● A pointer is a C++ variable that stores 
the address of an object.

● Given a pointer to an object, we can get 
back the original object.
● Can then read the object's value.
● Can then write the object's value.

● Think of a pointer as a URL for the 
object.



  

Pointers

● Setting up a pointer requires two steps:
● Declare the pointer variable.
● Initialize the pointer variable to refer to 

some object.

● These are all separate steps, and 
forgetting any one can result in hard-to-
find bugs.

● Once the pointer is set up, we can use it 
to read and write the object it refers to.



  

Pointers, Visually

int m = 137; 
int n = 42; 
 
int* ptr1 = &m; 
int* ptr2 = &n; 
 
*ptr1 = 2718; 
*ptr2 = *ptr1; 
 
ptr1 = ptr2; 
*ptr1 = m / n; 
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Assigning one pointer to another changes 
which object is being pointed at.  It does 

not change the value of the pointee.

Assigning one pointer to another changes 
which object is being pointed at.  It does 

not change the value of the pointee.



  

Why would we ever want to do this?



  

Allocating Multiple Objects

● One of the most important applications of 
pointers is dynamic memory allocation, the 
ability to construct brand-new objects at 
runtime.

● To allocate an array of n objects of type T, use 
the syntax

new T[n]

● This returns a pointer to the array of elements 
you have just allocated.



  

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;
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Dynamic Memory Allocation
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ptr[0] = 137;
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Notes on Dynamic Arrays

● Arrays in C++ do not know their own 
size.
● You must store this separately.

● Arrays in C++ do not have bounds-
checking.
● You must make sure not to read off the end 

of the array.

● Arrays in C++ cannot be resized.



  

Cleaning Up

● Unlike other languages like Java, in C++, you are 
responsible for deallocating any memory allocated with 
new[].

● You can deallocate memory with the delete[] 
operator:

delete[] ptr;

● This destroys the array pointed at by the given pointer, 
not the pointer itself.
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Words of Caution

● C++ has few of the safety features present in 
Java.

● All of the following result in undefined 
behavior in C++:
● Reading or writing through a pointer that you 

haven't initialized.
● Reading or writing through a pointer to memory 

that you have deallocated.
● Reading off the end of an array.
● Treating a non-array like an array.



  

Implementing Stack



  

Implementing Stack

● Last time, we saw how to implement 
RandomBag in terms of Vector.

● We could also implement Stack in terms 
of Vector.

● What if we wanted to implement the 
Stack without relying on any other 
collections?

● Let's build the stack directly!



  

Storing Values

● Right now, if we need to store multiple 
values, we can
● Declare a whole bunch of variables,
● Use a collections class, or
● Dynamically allocate space.
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An Initial Idea

● A bounded stack.
● Allocate a fixed-size array for elements.
● Add elements to the array when they're 

pushed.
● Remove elements from the array when 

they're popped.
● Report an error if we exceed the size of 

the array.



  

An Initial Idea
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Let's Code it Up!



  

Constructors

● A constructor is a special member 
function used to set up the class before it 
is used.

● The constructor is automatically called 
when the object is created.

● Syntax: The constructor for a class 
named ClassName has signature

ClassName(args); 



  

Destructors

● A destructor is a special member function 
responsible for cleaning up an object's memory.

● Automatically called when a local variable goes 
out of scope.

● Automatically called if you delete a pointer to 
an object.

● Syntax: The constructor for a class named 
ClassName has signature

~ClassName(); 
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