

Implementing Abstractions

Pointers

● A pointer is a C++ variable that stores
the address of an object.

● Given a pointer to an object, we can get
back the original object.
● Can then read the object's value.
● Can then write the object's value.

● Think of a pointer as a URL for the
object.

Pointers

● Setting up a pointer requires two steps:
● Declare the pointer variable.
● Initialize the pointer variable to refer to

some object.

● These are all separate steps, and
forgetting any one can result in hard-to-
find bugs.

● Once the pointer is set up, we can use it
to read and write the object it refers to.

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 2718
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 2718
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
*ptr1 = m
/ n;

2718 2718
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
*ptr1 = m
/ n;

160 2718
m n

ptr1 ptr2

Pointers, Visually

160 2718
m n

ptr1 ptr2

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
ptr1 = ptr2;

Pointers, Visually

160 2718
m n

ptr1 ptr2

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
ptr1 = ptr2;

Pointers, Visually

160 2718
m n

ptr1 ptr2

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
ptr1 = ptr2;

Assigning one pointer to another changes
which object is being pointed at. It does

not change the value of the pointee.

Assigning one pointer to another changes
which object is being pointed at. It does

not change the value of the pointee.

Why would we ever want to do this?

Allocating Multiple Objects

● One of the most important applications of
pointers is dynamic memory allocation, the
ability to construct brand-new objects at
runtime.

● To allocate an array of n objects of type T, use
the syntax

new T[n]

● This returns a pointer to the array of elements
you have just allocated.

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;

Dynamic Memory Allocation

int* ptr;
ptr = new int;

*ptr = 137;

ptr

?

Dynamic Memory Allocation

int* ptr;
ptr = new int[5];

*ptr = 137;

ptr

?

Dynamic Memory Allocation

int* ptr;
ptr = new int[5];

*ptr = 137;

???

???

???

???

???

ptr

?

Dynamic Memory Allocation

int* ptr;
ptr = new int[5];

*ptr = 137;

ptr

???

???

???

???

???

Dynamic Memory Allocation

int* ptr;
ptr = new int[5];

ptr[0] = 137;

ptr

???

???

???

???

???

Dynamic Memory Allocation

int* ptr;
ptr = new int[5];

ptr[0] = 137;

ptr
137
???

???

???

???

Dynamic Memory Allocation

int* ptr;
ptr = new int[5];

ptr[0] = 137;
ptr[2] = 42;

ptr
137
???

???

???

???

Dynamic Memory Allocation

int* ptr;
ptr = new int[5];

ptr[0] = 137;
ptr[2] = 42;

ptr
137
???

42
???

???

Notes on Dynamic Arrays

● Arrays in C++ do not know their own
size.
● You must store this separately.

● Arrays in C++ do not have bounds-
checking.
● You must make sure not to read off the end

of the array.

● Arrays in C++ cannot be resized.

Cleaning Up

● Unlike other languages like Java, in C++, you are
responsible for deallocating any memory allocated with
new[].

● You can deallocate memory with the delete[]
operator:

delete[] ptr;

● This destroys the array pointed at by the given pointer,
not the pointer itself.

Cleaning Up

● Unlike other languages like Java, in C++, you are
responsible for deallocating any memory allocated with
new[].

● You can deallocate memory with the delete[]
operator:

delete[] ptr;

● This destroys the array pointed at by the given pointer,
not the pointer itself.

ptr
137

42

42

Cleaning Up

● Unlike other languages like Java, in C++, you are
responsible for deallocating any memory allocated with
new[].

● You can deallocate memory with the delete[]
operator:

delete[] ptr;

● This destroys the array pointed at by the given pointer,
not the pointer itself.

ptr
137

42

42

Cleaning Up

● Unlike other languages like Java, in C++, you are
responsible for deallocating any memory allocated with
new[].

● You can deallocate memory with the delete[]
operator:

delete[] ptr;

● This destroys the array pointed at by the given pointer,
not the pointer itself.

ptr
???

Words of Caution

● C++ has few of the safety features present in
Java.

● All of the following result in undefined
behavior in C++:
● Reading or writing through a pointer that you

haven't initialized.
● Reading or writing through a pointer to memory

that you have deallocated.
● Reading off the end of an array.
● Treating a non-array like an array.

Implementing Stack

Implementing Stack

● Last time, we saw how to implement
RandomBag in terms of Vector.

● We could also implement Stack in terms
of Vector.

● What if we wanted to implement the
Stack without relying on any other
collections?

● Let's build the stack directly!

Storing Values

● Right now, if we need to store multiple
values, we can
● Declare a whole bunch of variables,
● Use a collections class, or
● Dynamically allocate space.

Storing Values

● Right now, if we need to store multiple
values, we can
● Declare a whole bunch of variables,
● Use a collections class, or
● Dynamically allocate space.

Storing Values

● Right now, if we need to store multiple
values, we can
● Declare a whole bunch of variables,
● Use a collections class, or
● Dynamically allocate space.

An Initial Idea

● A bounded stack.
● Allocate a fixed-size array for elements.
● Add elements to the array when they're

pushed.
● Remove elements from the array when

they're popped.
● Report an error if we exceed the size of

the array.

An Initial Idea

4

0

allocated
length

logical
length

element
array

An Initial Idea

4

1

allocated
length

logical
length

element
array

137

An Initial Idea

4

2

allocated
length

logical
length

element
array

137 42

An Initial Idea

4

3

allocated
length

logical
length

element
array

137 42 2718

An Initial Idea

4

4

allocated
length

logical
length

element
array

137 42 2718 512

An Initial Idea

4

3

allocated
length

logical
length

element
array

137 42 2718

An Initial Idea

4

2

allocated
length

logical
length

element
array

137 42

An Initial Idea

4

3

allocated
length

logical
length

element
array

137 42 161

An Initial Idea

4

4

allocated
length

logical
length

element
array

137 42 161 314

Let's Code it Up!

Constructors

● A constructor is a special member
function used to set up the class before it
is used.

● The constructor is automatically called
when the object is created.

● Syntax: The constructor for a class
named ClassName has signature

ClassName(args);

Destructors

● A destructor is a special member function
responsible for cleaning up an object's memory.

● Automatically called when a local variable goes
out of scope.

● Automatically called if you delete a pointer to
an object.

● Syntax: The constructor for a class named
ClassName has signature

~ClassName();

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

