

Designing Abstractions

Announcements

● Assignment 3 due right now.
● Assignment 4: Boggle out, due next

Friday, May 11.
● Play around with a really cool application of

recursion.
● Write a computer program that can trounce

you at a word game!

Announcements

● Casual dinner for women studying
computer science tomorrow at 6:15PM in
Gates 219.
● Good food, good company.
● Everyone is welcome!

Announcements

● Panel tomorrow
night about
technology and
public office.

● 7PM tonight in
Gates 100.

Announcements

● Midterm Exam #1 this Thursday, May 3 from
7:00PM – 9:00PM.

● Location by last name:
● A – J: Go to Braun Auditorium
● K – R: Go to Hewlett 201
● S – Z: Go to Braun Lecture Hall

● Open-book, open-note, but closed-computer.

● Covers material up to and including last Friday's
lecture on big-O and sorting.

● Alternate exams: We'll email out dates/times later
today.

Fundamental Question #1

How do our tools work?

Fundamental Question #2

How do we build new tools?

Fundamental Question #3

How do we analyze our tools?

Classes

● Vector, Stack, Queue, Map, etc. are
classes in C++.

● Classes contain
● An interface specifying what operations can

be performed on instances of the class.
● An implementation specifying how those

operations are to be performed.

● To define our own classes, we must
define both the interface and the
implementation.

Random Bags

● A random bag is a data structure similar to a
stack or queue.

● Supports two operations:
● Add, which adds an element to the random bag,

and
● Remove random, which returns and removes a

random element from the bag.
● Has several applications:

● Random maze generation
● Shuffling decks of cards.

Let's Code it Up!

Defining Classes in C++

● First, create a header file containing the
interface of your class.

● Then, create a source file containing the
implementation of your class.

● Lots of details; in interest of space,
consult the course reader for details.

Language Philosophy

● Every programming language exports
some set of primitives:
● Primitive data types (int, char, etc.)
● Functions
● Classes
● etc.

● We can use those primitives to construct
a larger set of primitives:
● Vector, RandomBag, etc.

Where Does it Stop?

● The ADTs we've been using are not
primitives in C++; they are defined in
terms of other language features.

● Understanding those features will let us
analyze their efficiency.

● Understanding those features will let us
build other interesting abstractions.

A Quick Aside: Pages and URLs

● To visit webpages, you can just provide a
URL that indicates what page you want
to look up.

● Every page contains content, but also has
a URL by which it can be referred to.

● There is a distinction between the page
itself (the actual content) and the link to
the page (a way of referring to the page).

A Quick Aside: Phone Numbers

● To talk to one of your friends, you can
call their phone given their phone
number.

● Your friends are all wonderful people,
and they probably have phone numbers
that can be used to refer to them.

● There is a distinction between your
friends and their phone numbers.

A Quick Aside: Files and Filenames

● To read or write data on your computer,
you can open a file with a given name.

● Most files have names that refer to them,
and some files can contain the names of
other files.

● There is a distinction between a file and
a filename.

So What?

● These systems all have a distinction
between objects and names for
objects.

● We can look up the object given the
name.

● This leads to key pieces of C++ design.

Memory Addresses

● Every object in C++ is physically located
somewhere in memory.

● The location is called its address.

● Intuitively, think of the address as a link to the
object, or a phone number for the object, or a
name for the object.

● Given a variable, you can obtain its address by
using the address-of operator (&):

cout << &myVariable << endl;

Pointers

● A pointer is a C++ variable that stores
the address of an object.

● Given a pointer to an object, we can get
back the original object.
● Can then read the object's value.
● Can then write the object's value.

● Think of a pointer as a URL for the
object.

Pointers

● Setting up a pointer requires two steps:
● Declare the pointer variable.
● Initialize the pointer variable to refer to

some object.

● These are all separate steps, and
forgetting any one can result in hard-to-
find bugs.

● Once the pointer is set up, we can use it
to read and write the object it refers to.

Pointers

Setting up a pointer requires two steps:
● Declare the pointer variable.

Initialize the pointer variable to refer to
some object.

These are all separate steps, and
forgetting any one can result in hard-to-
find bugs.

Once the pointer is set up, we can use it
to read and write the object it refers to.

Declaring a Pointer Variable

● In C++, pointers encode two pieces of
information:
● What object is being referred to?
● What type of object is that?

● To declare a pointer that refers to an
object of type T, declare a variable of
type T*:

T* variableName;

Pointers

● Setting up a pointer requires two steps:
● Declare the pointer variable.
● Initialize the pointer variable to refer to

some object.

● These are all separate steps, and
forgetting any one can result in hard-to-
find bugs.

● Once the pointer is set up, we can use it
to read and write the object it refers to.

Pointers

Setting up a pointer requires two steps:

Declare the pointer variable.
● Initialize the pointer variable to refer to

some object.

These are all separate steps, and
forgetting any one can result in hard-to-
find bugs.

Once the pointer is set up, we can use it
to read and write the object it refers to.

Choosing What to Point To

● Now that we have a pointer, we should set it to
point to some object!

● Pointers store addresses, so if we want our
pointer to point at an object, we can assign the
pointer the address of that object.

● For example:

int* myPtr = &myVariable;

● The object being pointed at is called the
pointee.

Pointers

● Setting up a pointer requires two steps:
● Declare the pointer variable.
● Initialize the pointer variable to refer to

some object.

● These are all separate steps, and
forgetting any one can result in hard-to-
find bugs.

● Once the pointer is set up, we can use it
to read and write the object it refers to.

Pointers

Setting up a pointer requires two steps:

Declare the pointer variable.

Initialize the pointer variable to refer to
some object.

These are all separate steps, and
forgetting any one can result in hard-to-
find bugs.

● Once the pointer is set up, we can use it
to read and write the object it refers to.

Using a Pointer

● Once we have a pointer that points at
some object, we can dereference the
pointer to read and write that object.

● To dereference a pointer, prefix it with a
*, as shown here:

*ptr = 137;

cout << *ptr << endl;

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

137 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 42
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 2718
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;

ptr1 = ptr2;
*ptr1 = m / n;

2718 2718
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
*ptr1 = m
/ n;

2718 2718
m n

ptr1 ptr2

Pointers, Visually

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
*ptr1 = m
/ n;

160 2718
m n

ptr1 ptr2

Pointers, Visually

160 2718
m n

ptr1 ptr2

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
ptr1 = ptr2;

Pointers, Visually

160 2718
m n

ptr1 ptr2

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
ptr1 = ptr2;

Pointers, Visually

160 2718
m n

ptr1 ptr2

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
ptr1 = ptr2;

Assigning one pointer to another changes
which object is being pointed at. It does

not change the value of the pointee.

Assigning one pointer to another changes
which object is being pointed at. It does

not change the value of the pointee.

Pointers, Visually

160 2718
m n

ptr1 ptr2

int m = 137;
int n = 42;

int* ptr1 = &m;
int* ptr2 = &n;

*ptr1 = 2718;
*ptr2 = *ptr1;
m = 160; 2
ptr1 = ptr2;
ptr1 = ptr2;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

