
  

Thinking Recursively
Part Four



  

Announcements

● Assignment 2 due right now.
● Assignment 3 out, due next Monday, 

April 30th at 10:00AM.
● Solve cool problems recursively!
● Sharpen your recursive skillset!



A Little Word Puzzle



“What nine-letter word can be reduced to a 
single-letter word one letter at a time by 

removing letters, leaving it a legal word at 
each step?”



Shrinkable Words

● Let's call a word with this property a 
shrinkable word.

● Anything that isn't a word isn't a shrinkable 
word.

● Any single-letter word is shrinkable
● A, I, O

● Any multi-letter word is shrinkable if you can 
remove a letter to form a word, and that word 
itself is shrinkable.

● So how many shrinkable words are there?



Recursive Backtracking

● The function we wrote last time is an 
example of recursive backtracking.

● At each step, we try one of many possible 
options.

● If any option succeeds, that's great!  
We're done.

● If none of the options succeed, then this 
particular problem can't be solved.



Recursive Backtracking

if (problem is sufficiently simple) {

    return whether or not the problem is solvable

} else {

    for (each choice) {

        try out that choice.

        if it succeeds, return success.

    }

    return failure

}
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Failure in Backtracking

● Returning false in recursive backtracking 
does not mean that the entire problem is 
unsolvable!

● Instead, it just means that the current 
subproblem is unsolvable.

● Whoever made the call to this function 
can then try other options.

● Only when all options are exhausted can 
we know that the problem is unsolvable.



Extracting a Solution

● We now have a list of words that 
allegedly are shrinkable, but we don't 
actually know how to shrink them!

● Could we somehow have our function tell 
us if there's a solution?



Output Parameters

● An output parameter (or outparam) is 
a parameter to a function that stores the 
result of that function.

● Caller passes the parameter by 
reference, function overwrites the value.

● Useful if you need to return multiple 
values.
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symbols?
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RhHeCuRhSiON
● BaSe CaSe:

● The empty string can be spelled using just 
element symbols.

● RhHeCuRhSiV STeP:
● For each 1-, 2-, or 3-letter prefix:

– If that prefix is an element symbol, then check if 
the rest of the word is spellable.

– If so, then the original word is spellable too.
● Otherwise, no option works, so the word isn't 

spellable.



Revisiting an Old Problem



  

Buying Cell Towers
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Revisiting our Solution



  

Introduction to Algorithmic 
Analysis



  

The Call Tree
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Counting Recursive Calls

● Let n be the number of cities.
● Let C(n) be the number of function calls 

made.
● If n = 0, there is just one call, so C(0) = 1.
● If n = 1, there is just one call, so C(1) = 1.
● If n ≥ 2, we have the initial function call, 

plus the two recursive calls.  So 
C(n) = 1 + C(n – 1) + C(n – 2).



  

Counting Recursive Calls

● C(0) = C(1) = 1.
● C(n) = C(n – 1) + C(n – 2)
● This gives the series

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 
465, 753, 1219, 1973, 3193, 5167, … 

● This function grows very quickly, so our 
solution will scale very poorly.

● Neat mathematical aside – these numbers 
are called the Leonardo numbers.
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A Bigger Call Tree
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We're doing completely unnecessary work!
Can we do better?



  

What Just Happened?

● Remember what values we've 
computed so far.

● New base case: If we already computed 
the answer, we're done.

● When computing a recursive step, record 
the answer before we return it.

● This is called memoization.
● No, that is not a typo – there's no “r” in 

memoization.



  

Memoization

● Memoization is useful if
● you make a large number of recursive calls
● with exactly the same arguments.

● Not a “silver bullet” to speed things up, 
but when applicable can have huge 
performance implications.



  

Memoized Recursion
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Next Time

● Algorithmic Analysis
● How can we predict the behavior of an 

algorithm on inputs we haven't seen?
● How can we quantitatively rank algorithms 

against one another?
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