

Thinking Recursively
Part Four

Announcements

● Assignment 2 due right now.
● Assignment 3 out, due next Monday,

April 30th at 10:00AM.
● Solve cool problems recursively!
● Sharpen your recursive skillset!

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

Shrinkable Words

● Let's call a word with this property a
shrinkable word.

● Anything that isn't a word isn't a shrinkable
word.

● Any single-letter word is shrinkable
● A, I, O

● Any multi-letter word is shrinkable if you can
remove a letter to form a word, and that word
itself is shrinkable.

● So how many shrinkable words are there?

Recursive Backtracking

● The function we wrote last time is an
example of recursive backtracking.

● At each step, we try one of many possible
options.

● If any option succeeds, that's great!
We're done.

● If none of the options succeed, then this
particular problem can't be solved.

Recursive Backtracking

if (problem is sufficiently simple) {

 return whether or not the problem is solvable

} else {

 for (each choice) {

 try out that choice.

 if it succeeds, return success.

 }

 return failure

}

Failure in Backtracking

S T A R T L I N G

Failure in Backtracking

S T A R T L I N G

S T A R T L I G

Failure in Backtracking

S T A R T L I N G

S T A R T L I G

Failure in Backtracking

S T A R T L I N G

Failure in Backtracking

S T A R T L I N G

S T A R T I N G

Failure in Backtracking

S T A R T L I N G

S T A R T I N G

S T R T I N G

Failure in Backtracking

S T A R T L I N G

S T A R T I N G

S T R T I N G

Failure in Backtracking

S T A R T L I N G

S T A R T I N G

Failure in Backtracking

S T A R T L I N G

S T A R T I N G

S T A R I N G

Failure in Backtracking

● Returning false in recursive backtracking
does not mean that the entire problem is
unsolvable!

● Instead, it just means that the current
subproblem is unsolvable.

● Whoever made the call to this function
can then try other options.

● Only when all options are exhausted can
we know that the problem is unsolvable.

Extracting a Solution

● We now have a list of words that
allegedly are shrinkable, but we don't
actually know how to shrink them!

● Could we somehow have our function tell
us if there's a solution?

Output Parameters

● An output parameter (or outparam) is
a parameter to a function that stores the
result of that function.

● Caller passes the parameter by
reference, function overwrites the value.

● Useful if you need to return multiple
values.

CHeMoWIZrDy

CHeMoWIZrDy
● Some words can be spelled using just

element symbols from the periodic table.
● Given a word:

● Can you spell it out using just element
symbols?

● If so, what does it look like?

CHeMoWIZrDy
● Some words can be spelled using just

element symbols from the periodic table.
● Given a word:

● Can you spell it out using just element
symbols?

● If so, what does it look like?

CaNiNe

CHeMoWIZrDy
● Some words can be spelled using just

element symbols from the periodic table.
● Given a word:

● Can you spell it out using just element
symbols?

● If so, what does it look like?

CaNiNe

CHeMoWIZrDy
● Some words can be spelled using just

element symbols from the periodic table.
● Given a word:

● Can you spell it out using just element
symbols?

● If so, what does it look like?

RhHeCuRhSiON
● BaSe CaSe:

● The empty string can be spelled using just
element symbols.

● RhHeCuRhSiV STeP:
● For each 1-, 2-, or 3-letter prefix:

– If that prefix is an element symbol, then check if
the rest of the word is spellable.

– If so, then the original word is spellable too.
● Otherwise, no option works, so the word isn't

spellable.

Revisiting an Old Problem

Buying Cell Towers

137 42 95 272 52

Buying Cell Towers

137 42 95 272 52

Buying Cell Towers

137 42 95 272 52

Buying Cell Towers

14 22 13 25 30 11 9

Buying Cell Towers

14 22 13 25 30 11 9

Buying Cell Towers

14 22 13 25 30 11 9

14 22 13 25 30 11 9

14 22 13 25 30 11 9

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

Maximize what's left in here.

Revisiting our Solution

Introduction to Algorithmic
Analysis

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

Counting Recursive Calls

● Let n be the number of cities.
● Let C(n) be the number of function calls

made.
● If n = 0, there is just one call, so C(0) = 1.
● If n = 1, there is just one call, so C(1) = 1.
● If n ≥ 2, we have the initial function call,

plus the two recursive calls. So
C(n) = 1 + C(n – 1) + C(n – 2).

Counting Recursive Calls

● C(0) = C(1) = 1.
● C(n) = C(n – 1) + C(n – 2)
● This gives the series

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287,
465, 753, 1219, 1973, 3193, 5167, …

● This function grows very quickly, so our
solution will scale very poorly.

● Neat mathematical aside – these numbers
are called the Leonardo numbers.

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

The Call Tree

1, 2, 3, 4

2, 3, 4

3, 4

4

4

3, 4

4

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

A Bigger Call Tree

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

We're doing completely unnecessary work!
Can we do better?

What Just Happened?

● Remember what values we've
computed so far.

● New base case: If we already computed
the answer, we're done.

● When computing a recursive step, record
the answer before we return it.

● This is called memoization.
● No, that is not a typo – there's no “r” in

memoization.

Memoization

● Memoization is useful if
● you make a large number of recursive calls
● with exactly the same arguments.

● Not a “silver bullet” to speed things up,
but when applicable can have huge
performance implications.

Memoized Recursion

5

4

3

2

1 0

1

2

3

Next Time

● Algorithmic Analysis
● How can we predict the behavior of an

algorithm on inputs we haven't seen?
● How can we quantitatively rank algorithms

against one another?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

