

ArrayList

Reading a File

try {

 BufferedReader br = /* … open the file … */

 while (true) {

 String line = br.readLine();

 if (line == null) break;

 /* … process line … */

 }

 br.close();

} catch (IOException e) {

 /* … handle error … */

}

We can only
remember one line
of the file at a

time!

We can only
remember one line
of the file at a

time!

Remembering Lots of Data

● Declare multiple variables.
● Makes code really hard to read.
● Have to know how much space in advance.
● Can't treat variables uniformly.

● Store it in the canvas.
● Only works for GObjects.
● Can't easily retrieve them (getElementAt requires

locations)

● Store it as a String.
● Impractical for non-text information.

Looking Closer at Strings

H e l l o !
0 1 2 3 4 5

● A string stores a sequence of multiple
characters.
● Can access characters by index by calling
charAt.

● Every element has the same type.
● Namely, type char.

Looking Closer at Strings

H e l l o !
0 1 2 3 4 5

A string stores a sequence of multiple
characters.

Can access characters by index by calling
charAt.

● Every element has the same type.

Namely, type char. What if we
don't want to
store chars?

What if we
don't want to
store chars?

Introducing ArrayList

137 42 314 271 160 178

0 1 2 3 4 5

● An ArrayList stores a sequence of
multiple objects.
● Can access objects by index by calling get.

● All stored objects have the same type.
● You get to choose the type!

Strings and ArrayLists

● Both String and ArrayList store
zero-indexed sequences.
● Strings store chars.
● ArrayLists store objects.

● ArrayLists, unlike Strings, are mutable.
● You can insert, remove, and replace

elements.

Importing ArrayList

● To use ArrayList, you need to import it:

import java.util.*;

● Don't import the following:

import acmx.export.java.util.*;

Simple ArrayList Operations

● You can append an element to an ArrayList
by calling

arrayList.add(value)

● You can get the nth element of an ArrayList
by calling

arrayList.get(n)

● You can see how many elements are in an
ArrayList by calling

arrayList.size()

Time-Out for Announcements!

RadioLab: “Brown Box”
http://www.radiolab.org/story/brown-box/

An Interesting Listen

http://www.radiolab.org/story/brown-box/

Midterm Locations

● Midterm is tomorrow, February 11 from
7PM – 10PM.

● Locations divvied up by last name:
● Aa – Ep: Go to Braun Auditorium.
● Eq – Na: Go to Hewlett 200.
● Nb – Zz: Go to Cemex Auditorium.

● If you're taking the exam at an alternate time,
you should have heard from us with room
information. Contact us ASAP if you haven't!

Assignment 4 Demo

Assignments

● Assignment 3 due at 3:15PM today.
● Due Wednesday with one late period or Friday with

two.

● Assignment 4 (Readability Indices) out now,
due next Wednesday, February 19 at 3:15PM.
● Play around with strings, file processing, and
ArrayLists!

● Review session this Thursday, February 13 from
5:30PM – 6:30PM in Hewlett 200.

● Recommendation: Study for the midterm! Read
through the assignment handout by Wednesday.

Back to CS106A!

The Range-Based for Loop

● You can iterate over the elements of an
ArrayList, in order, using this syntax:

 for (type var : list) {

 /* … process var … */

 }

● Useful when you need to visit everything
in a list in order and don't need access to
the indices.

Wrapper Types

● ArrayList cannot directly store primitive
types.

● Java provides wrapper types that
“wrap” a primitive type inside an object.

int

double

char

boolean

Integer

Double

Character

Boolean

Putting it all Together

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

