Control Structures

Control Statements

> if
> for
> while

Control Statements

if
for
while

This is called the initialization statement and is performed before the loop starts.

This is called the step or increment and is performed at the end of each loop iteration.
for (int $i=0 ; i<N$; $i++$) $\{$
\}

This is called the loop condition or termination condition. The loop will check whether this statement is true before each iteration of the loop.
for (int i $=0 ; i<3 ; i++$) $\{$ println("Baby");
\}
println("Whoa");
for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
\} println("Whoa");

for int $i=0 ; i<3 ; i++$) $\{$ prıntIn("Baby");
\} println("Whoa");

for int $i=0 ; i<3 ; i++$) $\{$ prıntIn("Baby");
\} println("Whoa");

int i 0

for (int $i=0 ; i<3 ; i++)\{$ println("Baby");

\} println("Whoa");

int i 0

for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
\} println("Whoa");

int i
 0

for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
 \} println("Whoa");

int i
 0

for (int i $=0 ; i<3 ; i++$) $\{$

 println("Baby");\} println("Whoa");

int i
 0

$\theta \theta \theta$	Console Program
Baby	

for (int i $=0 ; i<3 ; i++$) $\{$

 println("Baby");\} println("Whoa");

int i

BRBCM Console Program

for (int i $=0 ; i<3 ; i++$) $\{$ println("Baby");

\} println("Whoa");

for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
 \} println("Whoa");

int i
 1

$\theta \theta \theta$	Console Program
Baby	

for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
 \} println("Whoa");

int i
 1

for (int i $=0 ; i<3 ; i++$) $\{$

 println("Baby");\} println("Whoa");
int i

(Bary Console Program

for (int i $=0 ; i<3 ; i++$) $\{$

 println("Baby");\} println("Whoa");

$$
\text { int i } 2
$$

$\theta \theta \theta$	Console Program
Baby	
Baby	

for (int $i=0 ; i<3 ; i++$) $\{$ println("Baby");

\} println("Whoa");

$$
\text { int i } 2
$$

$\theta \theta \theta$	Console Program
Baby	
Baby	

for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
 \} println("Whoa");

$$
\text { int i } 2
$$

for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
 \} println("Whoa");

$$
\text { int i } 2
$$

for (int $i=0 ; i<3 ; i++$) $\{$

 println("Baby");\} println("Whoa");

$$
\text { int i } 2
$$

Console Program
Baby
Baby
Baby

for (int i $=0 ; i<3 ; i++$) $\{$

 println("Baby");\} println("Whoa");

$$
\text { int i } 3
$$

Console Program
Baby
Baby
Baby

for (int $i=0 ; i<3 ; i++$) $\{$ println("Baby");

\} println("Whoa");

$$
\text { int i } 3
$$

for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
println("Whoa");
int i 3
Console Program
Baby
Baby
Baby
for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
println("Whoa");
int i 3
Console Program
Baby
Baby
Baby
Whoa
for (int $i=0 ; i<3 ; i++)$ \{ println("Baby");
\} println("Whoa");

$$
\text { int i } 3
$$

Console Program
Baby
Baby
Baby
Whoa

for (int i $=5$; i > 0; i--) \{ println(i + "...");

\}
println("Lift-off!");

An Actual Rocket Launch

http://www.youtube.com/watch?v=ShRa2RG2KDI
(Start at 9:25)

T-31 Seconds: Handoff has occurred T-17 Seconds: Firing chain armed т-10 Seconds: Hydrogen burn т-0 Seconds: Liftoff!

for (int i = 40; i > 0; i--) \{ println("T-" + i + "...");
\}
println("Lift-off!");

```
public void run() {
    /* Do the launch countdown! */
    for (int i = 40; i > 0; i--) {
        println("T-" + i + " seconds.");
        /* Specific mission commands. */
        if (i == 31) {
        println("Handoff has occurred.");
        } else if (i == 17) {
        println("Firing chain is armed.");
    } else if (i == 10) {
        println("Hydrogen burn.");
        }
    }
    println("Lift-off!");
}
```

```
public void run() {
    /* Do the launch countdown! */
    for (int i = 40; i > 0; i--) {
        println("T-" + i + " seconds.");
        /* Specific mission commands. */
        if (i == 31) {
        println("Handoff has occurred.");
        } else if (i == 17) {
        println("Firing chain is armed.");
    } else if (i == 10) {
        println("Hydrogen burn.");
    }
}
println("Lift-off!");
```

public void run() {
/* Do the launch countdown! */
for (int i = 40; i > 0; i--) {
println("T-" + i + " seconds.");
/* Specific mission commands. */
if (i == 31) {
println("Handoff has occurred.") ;
} else if (i == 17) {
println("Firing chain is armed.");
} else if (i == 10) {
println("Hydrogen burn.");
}
}
println("Lift-off!");
}

```

\section*{Magic Numbers}
- A magic number is a number written in a piece of code whose meaning cannot easily be deduced from context.
double weight \(=9.8 *(\) mass -14.3\()\);
- Magic numbers are a Bad Thing; they make code harder to read.

\section*{Constants}
- Not all variables actually vary.
- A constant is a name for a value that never changes.
- Syntax (defined outside of any method): private static final type name = value;
- By convention, constants are named in UPPER_CASE_WITH_UNDERSCORES to differentiate them from variables.

\section*{General Rules for Constants}
- You can usually use 0 and 1 in loops without needing constants.
- When computing averages, it's fine to just use the number 2.
- Anything more complex than this should probably be made into a constant.

\section*{Time-Out for Announcements!}

\section*{Friday Four Square! Today at 4:15PM, Outside Gates}

\section*{Announcements}
- Programming Assignment \#1 due right now.
- Due on next Wednesday if using a late day.
- LaIR closed on Sunday but open on Monday.
- Email due on Sunday night.
- Programming Assignment \#2 out today, due Friday, January 31 at 3:15PM.
- Play around with Java statements and control structures!
- Make some pretty pictures!
- Explore your creative potential!

\section*{Casual Dinner for Women in CS}
- Next Wednesday, January 22 at 6:00PM on the fifth floor of the Gates building.
- Good food, great company, and everyone is invited!
- RSVP through email link (sent out Tuesday).

\title{
Control Statements
}
for
if
while

\section*{Control Statements}

\section*{for if \\ while}

\section*{The while Loop}
while (condition) \{ ... statements ...
\}
- Checks condition before each iteration and executes statements if true.
- Does not check condition in the middle of the loop.

\section*{while loop}

\section*{Example:}
\[
\begin{aligned}
& \text { int } \mathrm{x}=15 ; \\
& \text { while }(\mathrm{x}>1)\{ \\
& \quad \mathrm{x} /=2 ; \\
& \quad \operatorname{println}(\mathrm{x}) ;
\end{aligned}
\]
\}


Console Program

\section*{while loop}

Example:
```

 int x = 15;
 while (x > 1) {
 x /= 2;
println(x);

```
    \}
\(\theta \theta \theta\)

Console Program

\section*{while loop}

Example:
```

int x = 15;
while (x > 1) {
x /= 2;
println(x);

```
    \}
\(\theta \theta \theta\)

Console Program

\section*{while loop}

Example:
int \(\mathrm{x}=15\); while ( \(\mathrm{x}>1\) ) \{
x /= 2;
println(x);
\}


Console Program

\section*{while loop}

Example:
int \(x=15\);
\begin{tabular}{|c|} 
while \((x>1)\) \\
\hline\(x /=2 ;\) \\
\hline println \((x) ;\)
\end{tabular}

15 int \(x\)
\}


Console Program

\section*{while loop}

Example:
\[
\begin{aligned}
& \text { int } x=15 ; \\
& \text { while }(x>1)\{ \\
& \hline \mathbf{x ~ / = ~ 2 ; ~} \\
& \hline \text { println }(x) ;
\end{aligned}
\]
\[
7 \text { int } x
\]
\}
Console Program

\section*{while loop}

\section*{Example:}
int \(x=15\);
while (x > 1) \{
x /= 2;
println(x);
\}
7 int \(\mathbf{x}\)
\(\theta \theta \theta\)
Console Program

\section*{while loop}

\section*{Example:}

\(\theta \theta \Theta\)
Console Program
7

\section*{while loop}

Example:
int \(\mathrm{x}=15\);
\begin{tabular}{|c|}
\hline while \((x>1) ~\{\) \\
\(x /=2 ;\) \\
int \(x\)
\end{tabular}
println(x);
\}
\[
\begin{aligned}
& \theta \theta \theta \\
& \hline 7
\end{aligned}
\]

Console Program

\section*{while loop}

Example:
\begin{tabular}{l} 
int \(x=15 ;\) \\
while \((x>1)\{\) \\
\hline\(x /=2 ;\) \\
\hline println \((x) ;\)
\end{tabular}
\}
\begin{tabular}{|ll}
\hline 000 & Console \\
\hline 7 & \\
\hline
\end{tabular}

\section*{while loop}

Example:
int \(x=15\);
\begin{tabular}{|c|c|}
\hline while \((x>1)\{\) & 3 \\
\hline\(x /=2 ;\) & int \(x\) \\
\hline println \((x) ;\) &
\end{tabular}
\}
\begin{tabular}{ll}
\hline\(\theta 0 \theta\) & Console \\
\hline 7 & \\
\hline
\end{tabular}

\section*{while loop}

\section*{Example:}
```

 int x = 15;
 while (x > 1) {
 x /= 2;
 println(x);
}
int x

```

Console Program
7

\section*{while loop}

\section*{Example:}
```

 int x = 15;
 while (x > 1) {
 x /= 2;
 println(x);
 }
    ```

Console Program

\section*{while loop}

Example:
int \(\mathrm{x}=15\);
\begin{tabular}{|c|c|}
\hline while \((x>1)\{\) & 3 \\
\(\mathbf{x} /=2 ;\) & int x
\end{tabular} println(x);
\}
\[
\begin{array}{|l|}
\hline \theta \theta \theta \\
\hline 7 \\
3
\end{array}
\]

Console Program

\section*{while loop}

Example:


\section*{while loop}

Example:


\section*{while loop}

\section*{Example:}
```

 int x = 15;
 while (x > 1) {
 x /= 2;
 println(x);
 }
 7
3

while loop

Example:

```
    int x = 15;
    while (x > 1) {
                        x /= 2;
                        println(x);
    }
```

Console Program

while loop

Example:
int $\mathrm{x}=15$;

| while $(\mathrm{x}>1)\{$ | 1 |
| :---: | :---: |
| $\mathrm{x} /=2 ;$ | int x | println(x);

\}
$\theta \theta \theta$
Console Program
7
3
1

while loop

Example:

$$
\begin{aligned}
& \text { int } \mathrm{x}=15 ; \\
& \text { while }(\mathrm{x}>1)\{ \\
& \quad \mathrm{x} /=2 ; \\
& \quad \operatorname{println}(\mathrm{x}) ;
\end{aligned}
$$

\}

$$
\begin{array}{|l|}
\hline \theta \theta \theta \\
\hline 7 \\
3 \\
1
\end{array}
$$

Console Program

Greatest Common Divisors

- Given two integers a and b, the greatest common divisor (or $g c d$) of a and b is the largest number that divides a and b.
- Examples:
- The gcd of 12 and 8 is 4.
- The gcd of 100 and 10 is 10.
- The gcd of 137 and 42 is 1.

Euclid's Algorithm 45

35

Euclid's Algorithm 45

35

Euclid's Algorithm

 10
Euclid's Algorithm

 10\section*{Euclid's Algorithm} | | |
| :--- | :--- |
| | |
| | 10 |
| | 5 |

Euclid's Algorithm

Euclid's Algorithm 45

| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

Euclid's Algorithm

- To compute the gcd of a and b :
- If $b=0$, the $g c d$ is a.
- Otherwise:
- Divide a by b and obtain the remainder r.
- Set a equal to b and b equal to r.
- Repeat.
- This procedure was known to the Greeks as anthyphairesis; it's almost always referred to now as Euclid's algorithm.
- It is one of the oldest algorithms still in use today.

