Machine Learning

Please evaluate this course on Axess!

Your comments really do make a difference.

Announcements

- Assignment 6 due right now.
- Due Friday at 3:15PM with one late day.
- Due Monday at 3:15PM with two late days.
- Assignment 7 (FacePamphlet) out now, due next Thursday, March 21 at 3:15PM
- No late submissions accepted (sorry about that - this is university policy).
- This is a hard deadline: anything received at 3:15:01PM or later will not be accepted.
- We will be holding extra LaIR hours this Sunday through Wednesday from 7PM - 11PM each night.

FacePamphlet Demo

Perceptron Learning

How do we choose good values for $w_{0} \ldots w_{n}$?

One Approach

- Train the perceptron on valid data.
- For each data point:
- Ask the perceptron what it thinks.
- If correct, do nothing.
- Otherwise, nudge $w_{0} \ldots w_{n}$ in the right direction.
- Repeat until number of errors is "small enough."
- Question: What kind of mistakes can we make?

False Positive

False Negative

A Cute Math Trick

- For false positives, set $w_{i}=w_{i}-\alpha x_{i}$.
- For false negatives, set $w_{i}=w_{i}+\alpha x_{i}$.
- For correct answers, set $w_{i}=w_{i}$.
- Let "YES" be 1 and "NO" be 0 .
- Consider the difference between actual answer and perceptron guess:
- False positive: Actually NO, we say YES. Difference is -1.
- False negative: Actually YES, we say NO. Difference is +1 .
- Correct answer: Both YES or both NO. Difference is 0.
- General update rule: $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}}+\boldsymbol{\alpha}$ (real-guess) $\boldsymbol{x}_{\boldsymbol{i}}$.

Perceptron Learning Algorithm

- Start with a random guess of each w_{i}.
- Repeat until perceptron is sufficiently accurate:
- Choose a training example ($x_{0}, x_{1}, \ldots, x_{n}$).
- Let real be the real answer, guess be the perceptron's guess.
- For each i, set $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}}+\boldsymbol{\alpha}$ (real-guess) $\boldsymbol{x}_{\boldsymbol{i}}$
- Note: Use batching in practice.
- Update everything all at once.

Application: Handwriting Analysis

- Train a computer to recognize handwritten numbers 0-9.
- Large training and test set available (MNIST Handwritten Digit Database)

Combining Perceptrons

This is called a neural network.

Machine Learning

- Interesting in machine learning? Take CS109 and CS229!
- Many beautiful algorithms:
- Naive Bayes classifiers (used in spam filtering).
- Decision trees (used in hospitals for diagnostics).
- Bayesian networks (used in cancer research to learn what causes tumors).
- Restricted Boltzmann machines (used to learn what cats look like).
- http://www.nytimes.com/2012/06/26/technology/in -a-big-network-of-computers-evidence-of-machine -learning.html?pagewanted=all

Next Time

- Where to Go from Here
- What comes next in CS?
- What can you do with what you've learned?

