Graphs and Networks

Announcements

- Casual CS Dinner for Women Studying Computer Science: Thursday, March 7 at 6PM in Gates 219!
- RSVP through the email link sent out earlier today.

Announcements

- Assignment 5 due right now.
- Assignment 6 (NameSurfer) out, due next Wednesday, March 13 at 3:15PM
- Second Midterm exam next Monday, March 11 from 7PM - 10PM in MemAud.
- Covers material up through and including Wednesday's lecture.
- Practice exam released today; solutions go out on Wednesday.
- Email Gil no later than 11:59PM on Wednesday if you need to take the exam at an alternate time.

NameSurfer Demo

A Social Network

Synonyms

Hostile

Direct

Source: xkcd

A graph is a mathematical structure for representing relationships.

A graph is a mathematical structure for representing relationships.

A graph is a mathematical structure for representing relationships.

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes connected by edges.

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes connected by edges.

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes connected by edges.

Some graphs are directed.

Some graphs are undirected.

Some graphs are undirected.

You can think of them as directed graphs with edges both ways.

How can we represent graphs in Java?

Representing Graphs

We can represent a graph as a map from nodes to the list of nodes each node is connected to.

HashMap<Node, ArrayList<Node>>

Node ArrayList<Node>
Node Connected To

The Wikipedia Graph

WIKIPEDIA The Free Encyclopedia

- Wikipedia (and the web in general) is a graph!
- Each page is a node.
- There is an edge from one page to another if the first page links to the second.

Network Analysis

- We can analyze how nodes in a graph are connected to learn more about the graph.
- How connected are the nodes in the graph?
- How important is each node in the graph?

Connectivity

Connectivity

Connectivity

Network Connectivity

- All actors and actresses have a Bacon number describing how removed they are from Kevin Bacon.
- Fewer than 1% of all actors and actresses have a Bacon number greater than six.

Finding Important Nodes

- Suppose that we want to have the computer find "important" articles on Wikipedia.
- We just have the link structure, not the text of the page, the number of edits, the length of the article, etc.
- How might we do this?

Link Analysis

- To find important Wikipedia pages, let's look at the links between pages.
- We'll make two assumptions:
- The more important an article is, the more pages will link to it.
- The more important an article is, the more that its links matter.
- An article is important if other important articles link to it.

Link Analysis

- An article is important if other important articles link to it.

The Random Surfer Model

(seriously though)

The Random Surfer Model

- Think about the behavior of a Wikipedia reader who randomly surfs Wikipedia.
- Visits some initial page at random.
- From there, the user either
- Clicks a random link on the page to some other article, or
- hits the "random page" link to visit a totally random page.

The Random Surfer Model

The Random Surfer Model

Ranking Articles with the RSM

- Randomly walk through the graph.
- At each step, either
- Jump to a totally random article, or
- Follow a random link.
- Record how many times each article was visited.
- The most-visited articles are, in some sense, the most important.

Other Applications of the RSM

- Ecosystem Stability:
- Each node represents a species.
- Edges represent one species that eats another.
- High-value species are those that are important to the stability of the ecosystem.
- Learn more:
- http://news.bbc.co.uk/2/hi/8238462.stm

Who invented this?

[Our approach] can be thought of as a model of user behavior. We assume there is a "random surfer" who is given a web page at random and keeps clicking on links, never hitting "back" but eventually gets bored and starts on another random page.
[Our approach] can be thought of as a model of user behavior. We assume there is a "random surfer" who is given a web page at random and keeps clicking on links, never hitting "back" but eventually gets bored and starts on another random page. The probability that the random surfer visits a page is its PageRank.

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Sergey Brin and Lawrence Page Computer Science Department, Stanford University, Stanford, CA 94305, USA sergey@cs.stanford.edu and page@cs.stanford.edu

http://quotingquotes.co.uk/wp-content/uploads/2012/01/1-larry-page_sergey-brin.jpg

Great things are possible in computing.

Great things are possible in computing.
You just need to do a little random surfing.

