

Debugging

Announcements

● YEAH hours (assignment review hours)
for Assignment 5 tonight from 7-9PM in
Herrin T175.
● Not televised, but materials will be uploaded

online.

http://en.wikipedia.org/wiki/File:First_flight2.jpg

Designing the Program

● Think like an
architect.

● What is the grand
vision?

● What will the large
pieces be?

http://upload.wikimedia.org/wikipedia/commons/9/99/Frank_Lloyd_Wright_LC-USZ62-36384.jpg

Writing the Program

● Think like an
engineer.

● Flesh out the
design by actually
making it happen.

http://www.infobarrel.com/media/image/15873.jpg

Testing the Program

● Think like a
vandal.

● Try doing things to
the program that
aren't expected:
● Enter invalid or

nonsensical data.
● Don't follow

directions.

http://www.conversationmarketing.com/Snidely%2BWhiplash.png

Debugging the Program

● Think like a
detective.

● Follow the clues
the program gives
to determine the
logical cause of
the bug.

http://upload.wikimedia.org/wikipedia/commons/c/cf/Agatha_Christie.png

What Causes Bugs?

Actual Bug from Mark II
Computer

© National Museum of American History
Source: Smithsonian National Museum of History

Kenneth E. Behring Center
http://americanhistory.si.edu/dynamic/images/collections_xlarge/92-13129_428px.jpg

What Causes Bugs?

● Incorrect values in variables.
● Using the wrong variable.
● Computing a value incorrectly.

● Logical errors.
● Looping the wrong number of times.
● Incorrect expressions in if statements.

● Bad assumptions.
● Assuming that the input has some form that

it doesn't.

Debugging Philosophy

● Find out what the program is doing, not
what it's not doing.
● The computer will do exactly what you told it

to do; you just told it to do the wrong thing!

● Be patient: The bug isn't trying to hide,
and with enough effort you're going to
find it.

While Debugging...

● Don't start making changes to the
program without a good reason.
● You're going to introduce new bugs!
● You're going to complicate your bug hunt!

● Ask the program to tell you what it's
doing.
● Pull up a debugger and look at what's

happening.

Runtime Exceptions

● ArrayIndexOutOfBoundsException
● Attempted to look up an element in an array at an invalid

index.
● Check to make sure that the index is valid and that the array

has the length you think it does.
● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid
index.

● Check to make sure that the index is valid and that the
String has the length you think it does.

● NullPointerException
● Attempted to call a method on a null reference (for example,

an uninitialized String or GRect).
● Check the receiver object to make sure it's not null.

Runtime Exceptions

● ArrayIndexOutOfBoundsException
● Attempted to look up an element in an array at an invalid

index.
● Check to make sure that the index is valid and that the array

has the length you think it does.
● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid
index.

● Check to make sure that the index is valid and that the
String has the length you think it does.

● NullPointerException
● Attempted to call a method on a null reference (for example,

an uninitialized String or GRect).
● Check the receiver object to make sure it's not null.

Runtime Exceptions

● ArrayIndexOutOfBoundsException
● Attempted to look up an element in an array at an invalid

index.
● Check to make sure that the index is valid and that the array

has the length you think it does.
● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid
index.

● Check to make sure that the index is valid and that the
String has the length you think it does.

● NullPointerException
● Attempted to call a method on a null reference (for example,

an uninitialized String or GRect).
● Check the receiver object to make sure it's not null.

Runtime Exceptions

● ArrayIndexOutOfBoundsException
● Attempted to look up an element in an array at an invalid

index.
● Check to make sure that the index is valid and that the array

has the length you think it does.
● StringIndexOutOfBoundsException

● Attempted to look up an element in a String at an invalid
index.

● Check to make sure that the index is valid and that the
String has the length you think it does.

● NullPointerException
● Attempted to call a method on a null reference (for example,

an uninitialized String or GRect).
● Check the receiver object to make sure it's not null.

Infinite Loops

● Infinite loops result when a loop that
ought to terminate never does.

● Program will seem unresponsive, or will
keep doing the same thing over and over
again.

● Step through the program with a
debugger.
● Can you find out why the loop isn't

terminating?

An Extended Example

http://www.casinosonline.co.uk/userContent/roulette-pic.gif

Roulette

● Wheel contains the numbers 0 – 36.
● A ball is tossed into the wheel and ends at one of the

numbers.
● Can place lots of different bets on the outcome, but

we'll consider four:
● Low: The number is between 1 and 19.
● High: The number is between 20 and 36.
● Odd: The number is odd.
● Even: The number is even (but not zero).

● If you win, you get 2x your bet back.
● Odds are slightly against you because 0 always loses.

Preventing Bugs

● The best way to debug is to prevent bugs
from occurring in the first place.

● Test your program often.
● Write the program in small pieces and verify

that each piece works as you write it.
● Sometimes called “unit testing.”

● Use libraries when possible.
● Thoroughly-tested code is less likely to be

buggy than your own version.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Actual Bug from Mark II Computer
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

