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Drawing Geometrical Objects

Graphic courtesy of Eric Roberts



Drawing Geometrical Objects
Constructors  
new GRect( x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size 
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Drawing Geometrical Objects
Constructors  
new GRect( x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size 

new GOval( x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions. 
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Drawing Geometrical Objects
Constructors  
new GRect( x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size 

new GOval( x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions. 

new GLine( x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1). 
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Drawing Geometrical Objects
Constructors  
new GRect( x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size 

new GOval( x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions. 

Methods shared by the GRect and GOval classes  
object.setFilled( fill)

If fill is true, fills in the interior of the object; if false, shows only the 
outline.

object.setFillColor( color)
Sets the color used to fill the interior, which can be different from the 
border.

new GLine( x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1). 

Graphic courtesy of Eric Roberts



Size of the Graphics Window

Methods provided by GraphicsProgram class  
getWidth()

Returns the width of the graphics window. 

getHeight()

Returns the height of the graphics window. 

Based on slides by Eric Roberts

Note: receiver of these calls is the GraphicsProgram 
itself, so we don’t need to specify a separate object 
as receiver.



Centering an Object

Graphics Program

getWidth();

     W

getWidth() / 2.0;

   W / 2.0  



Centering an Object

Graphics Program

getWidth();

     W

getWidth() / 2.0;

   W / 2.0  

x = (getWidth() / 2.0) – (W / 2.0);
x = (getWidth() - W) / 2.0;
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around.
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Passing Parameters

● A method can accept parameters when it is 
called.

● Syntax:

    private void name(parameters) {

        /* … method body … */

    }

● The values of the parameters inside the 
method are set when the method is called.

● The values of the parameters can vary 
between calls.



For more on the geometry
and properties of stars:

Vi Hart on Stars:
http://youtu.be/CfJzrmS9UfY

Wikipedia on Stars:
http://en.wikipedia.org/wiki/Star_polygon

http://youtu.be/CfJzrmS9UfY
http://en.wikipedia.org/wiki/Star_polygon


Factorials

● The number n factorial, denoted n!, is

1 × 2 × 3 × … × (n – 1) × n   
● For example:

● 3! = 1 × 2 × 3 = 6.
● 5! = 1 × 2 × 3 × 4 × 5 = 120
● 0! = 1 (by definition)

● Factorials show up everywhere:
● Taylor series.
● Counting ways to shuffle a deck of cards.
● Determining how quickly computers can sort values.



Returning Values

● A method may produce a value that can be read by 
its caller.

● To indicate that a method returns a value, specify 
the type returned in the method declaration:

        private type name(parameters) {

            /* … method body … */

        }

● A value can be returned with the return statement:

                return value;



Subtleties of return

● If a method has non-void return type, it must 
always return a value.

  private int thisIsWrong(int x) {

      if (x == 5) {

          return 0;

      } else {

  }          return 1;

      }

  } 

What do we 
return if x != 5?
What do we 

return if x != 5?



Subtleties of return

● If a method has non-void return type, it must 
always return a value.

  private int thisIsLegal(int x) {

      if (x == 5) {

          return 0;

      } else {

          return 1;

      }

  } 



Many Happy returns

● A method may have multiple return statements. 
The method ends as soon as return is 
executed.

  private int thisIsLegal(int x) {

      if (x == 5) {

          return 0;

      } else {

          return 1;

      }

  } 



Many Happy returns

● A method may have multiple return statements. 
The method ends as soon as return is 
executed.

  private int thisIsLegal(int x) {

      if (x == 5) {

          return 0;

      }

      return 1;

  }

   

The only way we can 
get here is if x is not 

equal to 5.

The only way we can 
get here is if x is not 

equal to 5.
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