

Methods

Friday Four Square Today!

Gates, 4:15PM

Drawing Geometrical Objects

Graphic courtesy of Eric Roberts

Drawing Geometrical Objects
Constructors
new GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size

Graphic courtesy of Eric Roberts

Graphics Program

 +x

+y

(x, y)

(x + width, y + height)

Drawing Geometrical Objects
Constructors
new GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size

new GOval(x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions.

Graphic courtesy of Eric Roberts

Graphics Program

 +x

+y

(x, y)

(x + width, y + height)

Drawing Geometrical Objects
Constructors
new GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size

new GOval(x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions.

new GLine(x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1).

Graphic courtesy of Eric Roberts

Graphics Program

 +x

+y

(x
0
, y

0
)

(x
1
, y

1
)

Drawing Geometrical Objects
Constructors
new GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size

new GOval(x, y, width, height)
Creates an oval that fits inside the rectangle with the same dimensions.

Methods shared by the GRect and GOval classes
object.setFilled(fill)

If fill is true, fills in the interior of the object; if false, shows only the
outline.

object.setFillColor(color)
Sets the color used to fill the interior, which can be different from the
border.

new GLine(x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1).

Graphic courtesy of Eric Roberts

Size of the Graphics Window

Methods provided by GraphicsProgram class
getWidth()

Returns the width of the graphics window.

getHeight()

Returns the height of the graphics window.

Based on slides by Eric Roberts

Note: receiver of these calls is the GraphicsProgram
itself, so we don’t need to specify a separate object
as receiver.

Centering an Object

Graphics Program

getWidth();

 W

getWidth() / 2.0;

 W / 2.0

Centering an Object

Graphics Program

getWidth();

 W

getWidth() / 2.0;

 W / 2.0

x = (getWidth() / 2.0) – (W / 2.0);
x = (getWidth() - W) / 2.0;

0 (0o)

1 (72o)

(144o) 2

(216o) 3

4 (288o)

0 (0o)

1 (51.43o)
2 (102.9o)

(154.3o) 3

(205.7o) 4

(257.1o) 5

6 (308.6o)

Each point k is connected to
point k + 2, after wrapping
around.

Point k is at
k

numSides
×360o

0 (0o)

1 (51.43o)
2 (102.9o)

(154.3o) 3

(205.7o) 4

(257.1o) 5

6 (308.6o)

Each point k is connected to
point k + 2, after wrapping
around.

r

(x, y)

(x + r cos θ, y + r sin θ)

+y

Point k is at
k

numSides
×360o

Each point k is connected to
point k + 2, after wrapping
around.

1 (51.43o)

r

(x, y)

(x + r cos θ, y - r sin θ)

Point k is at
k

numSides
×360o

Each point k is connected to
point k + 2, after wrapping
around.

+y

1 (51.43o)

Passing Parameters

● A method can accept parameters when it is
called.

● Syntax:

 private void name(parameters) {

 /* … method body … */

 }

● The values of the parameters inside the
method are set when the method is called.

● The values of the parameters can vary
between calls.

For more on the geometry
and properties of stars:

Vi Hart on Stars:
http://youtu.be/CfJzrmS9UfY

Wikipedia on Stars:
http://en.wikipedia.org/wiki/Star_polygon

http://youtu.be/CfJzrmS9UfY
http://en.wikipedia.org/wiki/Star_polygon

Factorials

● The number n factorial, denoted n!, is

1 × 2 × 3 × … × (n – 1) × n
● For example:

● 3! = 1 × 2 × 3 = 6.
● 5! = 1 × 2 × 3 × 4 × 5 = 120
● 0! = 1 (by definition)

● Factorials show up everywhere:
● Taylor series.
● Counting ways to shuffle a deck of cards.
● Determining how quickly computers can sort values.

Returning Values

● A method may produce a value that can be read by
its caller.

● To indicate that a method returns a value, specify
the type returned in the method declaration:

 private type name(parameters) {

 /* … method body … */

 }

● A value can be returned with the return statement:

 return value;

Subtleties of return

● If a method has non-void return type, it must
always return a value.

 private int thisIsWrong(int x) {

 if (x == 5) {

 return 0;

 } else {

 } return 1;

 }

 }

What do we
return if x != 5?
What do we

return if x != 5?

Subtleties of return

● If a method has non-void return type, it must
always return a value.

 private int thisIsLegal(int x) {

 if (x == 5) {

 return 0;

 } else {

 return 1;

 }

 }

Many Happy returns

● A method may have multiple return statements.
The method ends as soon as return is
executed.

 private int thisIsLegal(int x) {

 if (x == 5) {

 return 0;

 } else {

 return 1;

 }

 }

Many Happy returns

● A method may have multiple return statements.
The method ends as soon as return is
executed.

 private int thisIsLegal(int x) {

 if (x == 5) {

 return 0;

 }

 return 1;

 }

The only way we can
get here is if x is not

equal to 5.

The only way we can
get here is if x is not

equal to 5.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Drawing Geometrical Objects
	Size of Graphics Window
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

