Expressions and Control Statements

Announcements

- Programming Assignment \#1 Out:
- Karel the Robot: Due Friday, January 18 at 3:15 PM.
- Email: Due Sunday, January 20 at 11:59PM.
- Need help?
- Stop by the LaIR!
- Stop by our office hours!
- Ask your section leader!
- Section assignments mailed out yesterday; sections start today.
- Ready to start coding in Java? Check out the Blank Java Project link on the CS106A website!
- Did you submit assignments before Tuesday? If so, can you please resubmit?

In the News

US-CERT

UNITED STATES COMPUTER EMERGENCY READINESS TEAM

HOME

Alert (TA13-010A)

Oracle Java 7 Security Manager Bypass Vulnerability
Original release date: January 10,2013 | Last revised: January 14, 2013

Print Tweet f Send \pm Share

Systems Affected

Any system using Oracle Java 7 (1.7, 1.7.0) including

- Java Platform Standard Edition 7 (Java SE 7)
- Java SE Development Kit (JDK 7)
- Java SE Runtime Environment (JRE 7)
- OpenJDK 7 and 7 u
- IcedTea 2.x (IcedTea7 2.x)

All versions of Java 7 through update 10 are affected. Web browsers using the Java 7 plug-in are at high risk.

The Java Model

Source Code

Recap From Last Time

Variables

- A variable is a location where a program can store information for later use.

Variables

- A variable is a location where a program can store information for later use.

Variables

- A variable is a location where a program can store information for later use.
- Each variable has three pieces of information associated with it:

Variables

- A variable is a location where a program can store information for later use.
- Each variable has three pieces of information associated with it:
- Name: What is the variable called?

Variables

- A variable is a location where a program can store information for later use.

numVoters

- Each variable has three pieces of information associated with it:
- Name: What is the variable called?

Variables

- A variable is a location where a program can store information for later use.

numVoters

- Each variable has three pieces of information associated with it:
- Name: What is the variable called?
- Type: What sorts of things can you store in the variable?

Variables

- A variable is a location where a program can store information for later use.

int numVoters

- Each variable has three pieces of information associated with it:
- Name: What is the variable called?
- Type: What sorts of things can you store in the variable?

Variables

- A variable is a location where a program can store information for later use.

int numVoters

- Each variable has three pieces of information associated with it:
- Name: What is the variable called?
- Type: What sorts of things can you store in the variable?
- Value: What value does the variable have at any particular moment in time?

Variables

- A variable is a location where a program can store information for later use.

137 int numVoters

- Each variable has three pieces of information associated with it:
- Name: What is the variable called?
- Type: What sorts of things can you store in the variable?
- Value: What value does the variable have at any particular moment in time?

Expressions

Expressions

- Variables and other values can be used in expressions.
- Some familiar mathematical operators:
- + (addition)
- - (subtraction)
- * (multiplication)
- / (division)

The Remainder Operator

- The special operator \% computes the remainder of one value divided by another.
- $a \% b$ is pronouned " $a \bmod b$."
- For example:
- $15 \% 3=0$
- $14 \% 8=6$
- $21 \% 2=1$
- $14 \% 17=14$

Operator Precedence

- Java's mathematical operators have the following precedence:
- () (highest)
- * / \%
- + - (lowest)
- Operators of equal precedence are evaluated left-to-right.

Fun with Division

She got more than me:

A Useful Shorthand

- Commonly, programs contain code like this:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}+1 ; \\
& \mathbf{z}=\mathbf{z} / 14 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y}=\mathrm{y} * 137 \\
& \mathrm{w}=\mathrm{w}-3 ;
\end{aligned}
$$

A Useful Shorthand

- Commonly, programs contain code like this:

$$
\begin{array}{ll}
\mathrm{x}=\mathrm{x}+1 ; & \mathrm{y}=\mathrm{y} * 137 ; \\
\mathrm{z}=\mathrm{z} / 14 ; & \mathrm{w}=\mathrm{w}-3 ;
\end{array}
$$

- The statement
variable = variable op value ;
can be rewritten as
variable op= value;

A Useful Shorthand

- Commonly, programs contain code like this:

$$
\begin{aligned}
& \mathrm{x}+=1 ; \\
& \mathrm{z} /=14 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y} \text { *= } 137 ; \\
& \mathrm{w}-=3 ;
\end{aligned}
$$

- The statement
variable = variable op value ;
can be rewritten as
variable op= value;

Another Useful Shorthand

- In the special case of writing

$$
\text { variable = variable }+1 \text {; }
$$

we can instead write
variable ++;

- In the special case of writing

$$
\text { variable = variable - } 1 \text {; }
$$

we can instead write
variable --;

Control Statements Revisited

Control Statements

for
if
while

Control Statements

for

if
while

This is called the initialization statement and is performed before the loop starts.

This is called the step or increment and is performed at the end of each loop iteration.

This is called the loop condition or termination condition. The loop will check whether this statement is true before each execution.

Video: Gangnam Style

Lyrics for International Superstardom

Oppan Gangnam Style Gangnam Style
Op

Op
Op
Op
Oppan Gangnam Style
Gangnam Style
Op
Op
Op
Op
Oppan Gangnam Style

Lyrics for International Superstardom

Oppan Gangnam Style Gangnam Style

Oppan Gangnam Style Gangnam Style

Oppan Gangnam Style
for (int $i=0 ; i<4 ; i++)\{$ println("Op");
\}
println("Oppan Gangnam Style");
for (int $i=0 ; i<4 ; i++)$ \{ println("Op");
\}
println("Oppan Gangnam Style");

for (int i $=0 ; i<4 ; i++)$ \{ println("Op");
\}
println("Oppan Gangnam Style");

for (int i $=0 ; i<4 ; i++)$ \{ println("Op");
\}
println("Oppan Gangnam Style");

for (int i $=0$; i < 4; i++) \{ println("Op");
\}
println("Oppan Gangnam Style");

for (int i $=0 ; i<4 ; i++)$ \{ println("Op");
\}
println("Oppan Gangnam Style");

for (int i $=0 ; i<4 ; i++)$ \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	

for (int i $=0$; i < 4; i++) \{ println("Op");
\}
println("Oppan Gangnam Style");

for (int $i=0 ; i<4 ; i++)$ \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	

for (int i $=0 ; i<4 ; i++$) $\{$ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	

for (int i $=0$; i < 4; i++) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	

for (int i $=0 ; i<4 ; i++$) $\{$ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$$
\text { int i } 3
$$

$\theta \theta \theta$	Console Program
Op	
Op	
Op	

for (int i $=0$; i < 4; i++) \{ println("Op");
\}
println("Oppan Gangnam Style");
int i 3

$\theta \theta \theta$	Console Program
Op	
Op	
Op	

for (int i $=0 ; i<4 ; i++$) $\{$ println("Op");
\}
println("Oppan Gangnam Style");
int i 3

$\theta \theta \theta$	Console Program
Op	
Op	
Op	

for (int i $=0 ; i<4 ; i++$) $\{$ println("Op");
\}
println("Oppan Gangnam Style");
int i 3

$\theta \theta \theta$	Console Program
Op	
Op	
Op	
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$$
\text { int i } 3
$$

$\theta \theta \theta$	Console Program
Op	
Op	
Op	
Op	

for (int i $=0 ; i<4 ; i++$) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	
Op	
Op	

for (int i $=0$; i < 4; i++) \{ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$	Console Program
Op	
Op	
Op	
Op	

for (int i $=0 ; i<4 ; i++)$ \{ println("Op");
\}
println("Oppan Gangnam Style");

$\Theta \ominus \ominus$	Console Program
Op	
Op	
Op	
Op	

for (int $i=0 ; i<4 ; i++)$ \{ println("Op");
\}
println("Oppan Gangnam Style");

$$
\begin{array}{|l|}
\hline \theta \theta \theta \\
\hline O p \\
O p \\
O p \\
O p \\
\text { Oppan Gangnam Style } \\
\hline
\end{array}
$$

for (int i $=0 ; i<4 ; i++$) $\{$ println("Op");
\}
println("Oppan Gangnam Style");

$\theta \theta \theta$
Op
Op
Op
Op
Oppan

Oppan Gangnam Style Gangnam Style

 Op

Oppan Gangnam Style Gangnam Style

Op
Op
Op
Oppan Gangnam Style

Oppan Gangnam Style Gangnam Style
Op
Op
Op
Op

Oppan Gangnam Style Gangnam Style

Op
Op
Op
Oppan Gangnam Style

Boolean Expressions

- A boolean expression is a test for a condition (it is either true or false).
- Value comparisons:
== "equals"
!= "not equals"
> "greater than"
< "less than"
>= "greater than or equal to"
<= "less than or equal to"

Logical Operators

- We can apply logical operators to boolean values to produce new values.
- Logical NOT: !p
- ! p is true if p is false; ! p is false if p is true.
- Logical AND: $p \& \& q$
- $p \& \&$ is true when both p and q are true.
- Logical OR: p || q
- p \| \| q is true when p is true, q is true, or both p and q are true.
- Order of precedence given above.

Short-Circuit Evaluation

- Cute observations:
- true \|\| p is always true.
- false \&\& p is always false.
- The logical operators short-circuit: if the answer is known from the left operand, the right side is not computed.
- Example: The code boolean $\mathrm{b}=(\mathrm{x}==0)| |((\mathrm{y} / \mathrm{x})<20)$ will never divide by zero.

