

Programming Karel the Robot

Announcements

● Five Handouts Today:
● Honor Code
● Downloading Eclipse
● Running Karel Programs in Eclipse
● Programming Assignment #1
● Submitting Programming Assignments

● Programming Assignment #1 Out:
● Karel the Robot: Due Friday, January 18 at 3:15 PM
● Email: Due Sunday, January 20 at 11:59PM

The CS106A Grading Scale

++

+

✓+

✓

✓-

-

--

0

Assignment Grading

● You will receive two scores: a functionality
score and a style score.

● The functionality score is based on how
well your program works.
● Does it work correctly in the sample worlds?
● Does it work correctly in custom test worlds?

● The style score is based on how well your
program is written.
● We'll cover elements of good style throughout

this course.

Late Days

● Everyone has two free “late days” to use
as you see fit.

● A “late day” is an automatic extension for
one class period (Monday to Wednesday,
Wednesday to Friday, or Friday to
Monday). You do get extra time for
national holidays.

● If you need an extension beyond late
days, please talk to Gil.

Section Signups

● Section signups open tomorrow at 5PM
and close Sunday at 5PM.

● Sign up for section at

http://cs198.stanford.edu/section
● Link available on the CS106A course

website.

http://cs198.stanford.edu/section

A Word on the Honor Code

Our Very First Karel Program Revisited

import stanford.karel.*;

public class OurKarelProgram extends Karel {
public void run() {

move();
pickBeeper();
move();
turnLeft();
move();
turnLeft();
turnLeft();
turnLeft();
move();
putBeeper();
move();

}
}

import stanford.karel.*;

public class OurKarelProgram extends Karel {
public void run() {

move();
pickBeeper();
move();
turnLeft();
move();
turnLeft();
turnLeft();
turnLeft();
move();
putBeeper();
move();

}
}

import stanford.karel.*;

public class OurKarelProgram extends Karel {
public void run() {

move();
pickBeeper();
move();
turnLeft();
move();
turnLeft();
turnLeft();
turnLeft();
move();
putBeeper();
move();

}
}

This piece of the
program's source code
is called a method.

import stanford.karel.*;

public class OurKarelProgram extends Karel {
public void run() {

move();
pickBeeper();
move();
turnLeft();
move();
turnLeft();
turnLeft();
turnLeft();
move();
putBeeper();
move();

}
}

This line of code gives
the name of the method

(here, run)

import stanford.karel.*;

public class OurKarelProgram extends Karel {
public void run() {

move();
pickBeeper();
move();
turnLeft();
move();
turnLeft();
turnLeft();
turnLeft();
move();
putBeeper();
move();

}
}

The inside of the method
is is called the body of
the method and tells
Karel how to execute the
method.

import stanford.karel.*;

public class OurKarelProgram extends Karel {
public void run() {

move();
pickBeeper();
move();
turnLeft();
move();
turnLeft();
turnLeft();
turnLeft();
move();
putBeeper();
move();

}
}

This part of the program is
called a class definition.
We'll discuss classes later

this quarter.

import stanford.karel.*;

public class OurKarelProgram extends Karel {
public void run() {

move();
pickBeeper();
move();
turnLeft();
move();
turnLeft();
turnLeft();
turnLeft();
move();
putBeeper();
move();

}
}

This is called an import
statement. Again, we will

discuss this later in the quarter.

Improving our Program

The for loop

for (int i = 0; i < N; i++) {
… statements to repeat N times …

}

The while loop

while (condition) {
… statements to repeat when condition holds …
}

Some of Karel's Conditions:

frontIsClear()
frontIsBlocked()
beepersPresent()
beepersInBag()
facingNorth()
facingSouth()

See the Karel reader (Page 18) for more details.

while (condition) {
… statements to repeat when condition holds …
}

Some of Karel's Conditions:

frontIsClear()
frontIsBlocked()
beepersPresent()
beepersInBag()
facingNorth()
facingSouth()

See the Karel reader (Page 18) for more details.

The if statement

if (condition) {
… statements to run if condition holds …
}

if (condition) {
… statements to run if condition holds …
} else {
… statements to run if condition doesn't hold …

 }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

