
  

The Big Picture

Problem Set 9 due in the 
box up front. Congrats on 
finishing the last problem set 

of the quarter!
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Announcements

● Problem Set 9 due right now. We'll release 
solutions right after lecture.

● Final exam review session tomorrow in Gates 104 
from 2:15PM – 4:15PM

● Final Friday Four Square of the quarter!

– Today at 4:15PM, Outside Gates

● Please evaluate this course on Axess!  Your 
feedback really does make a difference!



  

The Big Picture
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Imagine what it must have been like to 
discover all of the results in this class.



  

Cantor's Theorem: |S| < | (℘ S)|

Corollary: Unsolvable problems exist.



  

What problems are unsolvable?



  

First, we need to learn
how to prove things.

Otherwise, how can we know for
sure that we're right about anything?



  

Now, we need to learn how to prove things 
about processes that proceed step-by-step.

So let's learn induction.



  

We also should be sure we have some
rules about reasoning itself.

Let's add some logic into the mix.



  

Okay!  So now we're ready to go!

What problems are unsolvable?



  

Well, first we need a
definition of a computer!
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Cool!  Now we have a model of a computer!



  

We're not quite sure what we can solve at
this point, but that's okay for now.

Let's call the languages we can capture
this way the regular languages.



  

I wonder what other
machines we can make?
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Wow!  Those new machines are
way cooler than our old ones!



  

I wonder if they're more powerful?
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Wow! I guess not. That's surprising!

So now we have a new way of modeling
computers with finite memory!



  

I wonder how we can combine
these machines together?
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Cool!  Since we can glue
machines together, we can glue

languages together as well.



  

How are we going to do that?



  

a+(.a+)*@a+(.a+)+



  

Cool!  We've got a new way
of describing languages.



  

So what sorts of languages
can we describe?
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Awesome!  We got back the
exact same class of languages.



  

It seems like all our models give us the
same power! Did we get every language?



  

xw ∈ L
yw ∉ L



  

Wow, I guess not.



  

But we did learn something cool:

We have just explored what problems 
can be solved with finite computers.



  

So what else is out there?



  

Can we describe languages another way?



  

S → aX
X → b | C
C → Cc | ε



  

Awesome!



  

So did we get every language yet?



  

Hmmm... guess not.



  

So what if we make our
memory a little better?
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Cool!  Can we make these
more powerful?
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Workspace Worklist of IDs

 

To simulate the NTM N with a DTM D, we construct D 
as follows:

· On input w, D converts w into an initial ID for N
  starting on w.
 

· While D has not yet found an accepting state:
 

    · D finds the next ID for N from the worklist.
 

    · D copies this ID once for each possible transition.
 

    · D simulates one step of the computation for each
       of these IDs.
 

    · D copies these IDs to the back of the worklist.
 

 

To simulate the NTM N with a DTM D, we construct D 
as follows:

· On input w, D converts w into an initial ID for N
  starting on w.
 

· While D has not yet found an accepting state:
 

    · D finds the next ID for N from the worklist.
 

    · D copies this ID once for each possible transition.
 

    · D simulates one step of the computation for each
       of these IDs.
 

    · D copies these IDs to the back of the worklist.
 



  

Wow!  Looks like we can't
get any more powerful.

(The Church-Turing thesis says
that this is not a coincidence!)



  

So why is that?



  

Space for ⟨M⟩ Space to simulate M's tape.… …

UTM = “On input ⟨M, w⟩:
 

· Copy M to one part of the tape and w to another.
 

· Place a marker in w to track M's current state and the
  position of its tape head.

 

· Repeat the following:
 

· If the simulated version of M has entered an accepting
  state, accept.

 

· If the simulated version of M has entered a rejecting
  state, reject.

 

· Otherwise:
 

· Consult M's simulated tape to determine what symbol
  is currently being read.

 

· Consult the encoding of M to determine how to
  simulate the transition.

 

· Simulate that transition.”
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· Simulate that transition.”



  

Wow! Our machines can
simulate one another!

This is a theoretical justification
for why all these models are
equivalent to one another.



  

So... can we solve everything yet?
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Oh great.  Some problems
are impossible to solve.



  

So is there just one
problem we can't solve?



  

LD ≤M ATM

ATM ∈ RE

ATM ∉ R



  

Okay... maybe we can't decide
or recognize everything.

Can we at least verify or refute everything?



  

ATM ≤M EQTM

ATM ≤M EQTM



  

co-RE RE

R

CFL

REG



  

Wow.  That's pretty deep.



  

So... what can we do efficiently?



  

PP



  

NPN P



  

So... how are you two related again?



  

No clue.



  

But what do we know about them?



  

P

      NP NP-Hard
NPC



  

What other mysteries remain in
theoretical computer science?



  

A Whole World of Theory Awaits!



  

Theory is all about exploring, 
experimenting, and discovering.

We've barely scratched the surface of 
theoretical computer science.
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experimenting, and discovering.

We've barely scratched the surface of 
theoretical computer science.



  

Your Questions



  

“If we develop quantum computing 
that allows for completion of NP 

problems in the same amount of time 
as P problems, does this minimize the 
importance of the P  ≟ NP problem?”



  

“What skills do you think are learned 
in CS courses versus in 'real world' job 

and internship experience? Going 
forward, what should we focus on in 

each?”



  

“In the problem set, it says that NP is 
a strict subset of R. What are some 
languages that are in R but not in 

NP?”



  

“I am really interested in the cocktail 
parties you keep mentioning, how do I 

get an invite?”



  

“What is your favorite algorithm and 
why?”



  

“Keith, will you go on a date with me?”



  

Where to Go From Here
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A
pplied

T
heoret ical

CS154
● Intro to Automata and Complexity 

Theory
● An in-depth treatment of automata, 

computability, and complexity.
● Emphasis on theoretical results in 

automata theory and complexity.
● Launching point for more advanced 

courses (CS254, CS354)



  

A
pplied

T
heoret ical

CS258
● Intro to Programming Language 

Theory
● Explore questions of computability in 

terms of recursion and recursive 
functions.

● Excellent complement to the material in 
this course; highly recommended.

● Offered every other year; consider 
checking it out!



  

A
pplied

T
heoret ical

CS109
● Intro to Probability for Computer 

Scientists
● Learn to embrace randomness.
● Use your newly acquired proof skills in 

an entirely different domain.
● See how computers can use statistics to 

learn patterns.



  

A
pplied

T
heoret ical

CS255
● Intro to Cryptography
● Use hard problems to your advantage!
● Explore NP-hardness and its relation to 

cryptography.
● See how to design secure systems out of 

hard problems.



  

A
pplied

T
heoret ical

CS161
● Design and Analysis of Algorithms
● Learn how to approach new problems 

and solve them efficiently.
● Learn how to deal with NP-hardness in 

the real world.
● Learn how to ace job interviews



  

A
pplied

T
heoret ical

CS143
● Compilers
● Watch automata, grammars, 

undecidability, and NP-completeness 
come to life by building a complete 
working compiler from scratch.

● See just how much firepower you can get 
from all this material.



  

A
pplied

T
heoret ical

CS107
● Computer Organization and Systems 
● You don't need to be a theoretician to 

love computer science!
● If you want to learn how the machine 

works under the hood, look no further.



  



  

There are more 
problems to solve than 
there are programs to 

solve them.



  

Where We've Been
● Given this hard theoretical limit, what can 

we compute?
– What are the hardest problems we can solve?
– How powerful of a computer do we need to solve 

these problems?
– Of what we can compute, what can we compute 

efficiently?

● What tools do we need to reason about this?
– How do we build mathematical models of 

computation?
– How can we reason about these models?



  

What We've Covered
● Sets

● Graphs

● Proof Techniques

● Relations

● Functions

● Cardinality

● Induction

● Logic

● Pigeonhole Principle

● DFAs

● NFAs

● Regular Expressions

● Nonregular Languages

● CFGs

● Turing Machines

● R, RE, and co-RE

● Unsolvable Problems

● Reductions

● Time Complexity

● P

● NP

● NP-Completeness



  

My Email Address:

htiek@cs.stanford.edu

mailto:htiek@cs.stanford.edu


  

Final Thoughts
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