
  

NP-Completeness
Part II



  

Recap from Last Time



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

      NP NP-Hard
NPC



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■
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The Tantalizing Truth

      NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: If L ∈ NPC, then L ∈ NP.  Thus if L ∉ P, then L ∈ NP – P. 
            This means that NP – P ≠ Ø, so P ≠ NP. ■ 



  

Satisfiability

● A propositional logic formula φ is called 
satisfiable if there is some assignment to 
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the 
variables of φ that makes it evaluate to 
true is called a satisfying assignment.



  

Literals and Clauses
● A literal in propositional logic is a 

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction) 
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)



  

Conjunctive Normal Form

● A propositional logic formula φ is in 
conjunctive normal form (CNF) if it is 
the many-way AND (conjunction) of 
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

Each clause must have 
at least one

true literal in it.

Each clause must have 
at least one

true literal in it.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

We should pick at least 
one true literal from 

each clause

We should pick at least 
one true literal from 

each clause



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

… subject to the constraint 
that we never choose a literal

and its negation

… subject to the constraint 
that we never choose a literal

and its negation



  

3-CNF

● A propositional formula is in 3-CNF if
● It is in CNF, and
● Every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● But not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF 
formula }



  

Theorem: 3SAT is NP-Complete



  

NP-Completeness

P

      NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.



  

Be Careful!

● To prove that some language L is NP-complete, show 
that L ∈ NP, then reduce some known NP-complete 
problem to L.

● Do not reduce L to a known NP-complete problem.

● We already knew you could do this; every NP problems is 
reducible to any NP-complete problem!

P

      NP

NPC



  

So what other problems are NP-complete?



  

An independent set in an undirected graph
is a set of vertices that have no edges between them



  

The Independent Set Problem

● Given an undirected graph G and a 
natural number n, the independent set 
problem is

Does G contain an independent set
of size at least n?

● As a formal language:

INDSET = { ⟨G, n⟩ | G is an 
undirected graph with an 

independent set of size at least n }



  

INDSET ∈ NP

● The independent set problem is in NP.
● Here is a polynomial-time verifier that 

checks whether S is an n-element 
independent set:
● V = “On input ⟨⟨G, n⟩, S⟩:

– If |S| < n, reject.
– For each edge in G, if both endpoints are in S, 

reject.
– Otherwise, accept.”



  

INDSET ∈ NPC

● The INDSET problem is NP-complete.
● To prove this, we will find a polynomial-time 

reduction from 3SAT to INDSET.
● Goal: Given a 3CNF formula φ, build a graph 
G and number n such that φ is satisfiable iff 
G has an independent set of size n.

● How can we accomplish this?



  

The Structure of 3CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

Each clause must have 
at least one

true literal in it.

Each clause must have 
at least one

true literal in it.



  

The Structure of 3CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

We should pick at least one
true literal from each clause

We should pick at least one
true literal from each clause



  

The Structure of 3CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

… subject to the constraint 
that we never choose a 
literal and its negation

… subject to the constraint 
that we never choose a 
literal and its negation



  

From 3SAT to INDSET

● To convert a 3SAT instance φ to an INDSET 
instance, we need a graph G and number n 
such that an independent set of size at least n 
in G
● gives us a way to choose which literal in each 

clause of φ should be true,
● doesn't simultaneously choose a literal and its 

negation, and
● has size polynomially large in the length of the 

formula φ.



  

From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph 
chooses exactly one literal from 

each clause to be true.



  

From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z

We need a way to ensure we never 
pick a literal and its negation.



  

From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z

No independent set in this graph can 
choose two nodes labeled x and ¬x.



  

From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If this graph has an independent set of
size three, the original formula is satisfiable.



  

From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z



  

From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x = false, y = true, z = false.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.



  

From 3SAT to INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x = false, y = true, z = false.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.



  

From 3SAT to INDSET
● Let φ = C1 ∧ C2 ∧ … ∧ Cn be a 3-CNF formula.

● Construct the graph G as follows:
● For each clause Ci = x1 ∨ x2 ∨ x3, where x1, x2, and x3 

are literals, add three new nodes into G with edges 
connecting them.

● For each pair of nodes vi and ¬vi, where vi is some 
variable, add an edge connecting vi and ¬vi.  (Note 
that there are multiple copies of these nodes)

● Claim One: This reduction can be computed in 
polynomial time.

● Claim: G has an independent set of size n iff φ is 
satisfiable.



  

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals. 
Then we construct 3n nodes in our graph. 
Each clause contributes 3 edges, so there are
O(n) edges added from clauses.  For each pair
of nodes representing opposite literals, we
introduce one edge.  Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges.  This gives a graph with O(n) nodes
and O(n2) edges.  Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■



  

Lemma: If the graph G has an independent set of size n (where 
n is the number of clauses in φ), then φ is satisfiable.
 

Proof: Suppose G has an independent set of size n, call if S.  No
two nodes in S can correspond to v and ¬v for any variable
v, because there is an edge between all nodes with this
property.  Thus for each variable v, either there is a node in
S with label v, or there is a node in S with label ¬v, or no
node in S has either label.  In the first case, set v to true; in
the second case, set v to false; in the third case, choose a
value for v arbitrarily.  We claim that this gives a satisfying
assignment for φ.

 

To see this, we show that each clause C in φ is satisfied.  By
construction, no two nodes in S can come from nodes added
by C, because each has an edge to the other.  Since there
are n nodes in S and n clauses in φ, for any clause in φ some
node corresponding to a literal from that clause is in S.  If
that node has the form x, then C contains x, and since we
set x to true, C is satisfied.  If that node has the form ¬x,
then C contains ¬x, and since we set x to false, C is
satisfied.  Thus all clauses in φ are satisfied, so φ is satisfied
by this assignment. ■



  

Lemma: If φ is satisfiable and has n clauses, then G has an 
independent set of size n.

Proof: Suppose that φ is satisfiable and consider any satisfying
assignment for it.  Thus under that assignment, for each
clause C, there is some literal that evaluates to true.  For
each clause C, choose some literal that evaluates to true
and add the corresponding node in G to a set S.  Then S has
size n, since it contains one node per clause.

We claim moreover that S is an independent set in G.  To see
this, note that there are two types of edges in G: edges
between nodes representing literals in the same clause, and
edges between variables and their negations.  No two nodes
joined by edges within a clause are in S, because we
explicitly picked one node per clause.  Moreover, no two
nodes joined by edges between opposite literals are in S,
because in a satisfying assignment both of the two could not
be true.  Thus no nodes in S are joined by edges, so S is an
independent set. ■



  

Putting it All Together

Theorem: INDSET is NP-complete.
 

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it.  So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

 

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave.  As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time. 
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■



  

Time-Out For Announcements!



  

Final Exam Logistics

● Final exam rooms divvied up by last 
name:
● Aba – Ber: Go to Hewlett 101
● Bil – Ell: Go to Hewlett 102
● Emb – Gra: Go to Hewlett 103
● Gre – Zuo: Go to Hewlett 200

● Review session: This Saturday from 
2:15PM – 4:15PM in Gates 104.



  

Solutions Released

● We've posted solutions to the two 
additional practice exams to the course 
website.

● Have questions on the EC final exam? 
Email the staff list, stop by office hours, 
or stop by the review session!



  

Your Questions



  

“What do the eye and the path to the tree 
mean in the NP slide the Friday before 

break?”



  

NPN P



  

NP
Font: DejaVu 

Serif

Font: DejaVu 
Serif



  

NP
Font: WebdingsFont: Webdings



  

“Keith, during lecture you said that a 
majority of computer scientists believe 
that P ≠ NP. What do you think? What 
degree of certainty would you assign to 

your guess?”



  

“Is it possible that P = NP but it still takes 
decades to find a decider for some specific 

(currently) NP problem? Conversely, if 
P ≠ NP, can we still find a decider for 

some specific NP problem? If so, why not 
just study specific problems?”



  

Back to CS103!



  

Structuring NP-Completeness Reductions



  

The Shape of a Reduction

● Polynomial-time reductions work by solving one 
problem with a solver for a different problem.

● Most problems in NP have different pieces that must 
be solved simultaneously.

● For example, in 3SAT:
● Each clause must be made true,
● but no literal and its complement may be picked.

● In INDSET:
● You can choose any nodes you want to put into the set,
● but no two connected nodes can be added.



  

Reductions and Gadgets

● Many reductions used to show 
NP-completeness work by using 
gadgets.

● Each piece of the original problem is 
translated into a “gadget” that handles 
some particular detail of the problem.

● These gadgets are then connected 
together to solve the overall problem.



  

Gadgets in INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Each of these gadgets is designed
to solve one part of the problem:
ensuring each clause is satisfied.



  

Gadgets in INDSET

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x

y

¬z ¬x

¬y

z ¬x

y

¬z

These connections ensure that the solutions
to each gadget are linked to one another.



  

Gadgets in INDSET

¬x

x

¬x

y

¬y



  

A More Complex Reduction



  

A 3-coloring of a graph is a way of coloring its
nodes one of three colors such that no two connected

nodes have the same color.



  

The 3-Coloring Problem

● The 3-coloring problem is

Given an undirected graph G,
is there a legal 3-coloring of its 

nodes?
● As a formal language:

3COLOR = { ⟨G⟩ | G is an undirected 
graph with a legal 3-coloring. }

● This problem is known to be NP-complete 
by a reduction from 3SAT.



  

3COLOR ∈ NP

● We can prove that 3COLOR ∈ NP by 
designing a polynomial-time 
nondeterministic TM for 3COLOR.

● M = “On input ⟨G⟩:
● Nondeterministically guess an assignment 

of colors to the nodes.
● Deterministically check whether it is a 

3-coloring.
● If so, accept; otherwise reject.”



  

A Note on Terminology

● Although 3COLOR and 3SAT both have “3” in 
their names, the two are very different 
problems.
● 3SAT means “there are three literals in every 

clause.”  However, each literal can take on only 
one of two different values.

● 3COLOR means “every node can take on one of 
three different colors.”

● Key difference:
● In 3SAT variables have two choices of value.
● In 3COLOR nodes have three choices of value.



  

Why Not Two Colors?
● It would seem that 2COLOR (whether a graph 

has a 2-coloring) would be a better fit.
● Every variable has one of two values.
● Every node has one of two values.

● Interestingly, 2COLOR is known to be in P and 
is conjectured not to be NP-complete.
● Though, if you can prove that it is, you've just 

won $1,000,000!



  

From 3SAT to 3COLOR

● In order to reduce 3SAT to 3COLOR, we need 
to somehow make a graph that is 3-colorable 
iff some 3-CNF formula φ is satisfiable.

● Idea: Use a collection of gadgets to solve the 
problem.
● Build a gadget to assign two of the colors the 

labels “true” and “false.”
● Build a gadget to force each variable to be either 

true or false.
● Build a series of gadgets to force those variable 

assignments to satisfy each clause.



  

Gadget One: Assigning Meanings

T F

O
These nodes 
must all have 
different 
colors.

The color assigned to T will be interpreted as “true.”
The color assigned to F will be interpreted as “false.”

We do not associate any special meaning with O.



  

Gadget Two: Forcing a Choice

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

x ¬x y ¬y z ¬z

T F

O



  

Gadget Three: Clause Satisfiability

( x ∨ y ∨ ¬z )

x y ¬zT F

This node is 
colorable iff one 
of the inputs is the 
same color as T



  

Gadget Three: Clause Satisfiability

( x ∨ y ∨ ¬z )

x y ¬zT F

This node cannot 
be colored



  

Gadget Three: Clause Satisfiability

( x ∨ y ∨ ¬z )

x y ¬zT F

Every other 
combination of inputs 
can give this a color



  

Putting It All Together

● Construct the first gadget so we have a 
consistent definition of true and false.

● For each variable v:
● Construct nodes v and ¬v.
● Add an edge between v and ¬v.
● Add an edge between v and O and between ¬v 

and O.

● For each clause C:
● Construct the earlier gadget from C by adding in 

the extra nodes and edges.



  

Putting It All Together

C
1

C
2

… C
n

T F

O

x
1

¬x
1 ... ... x

k
¬x

k



  

Analyzing the Reduction

● How large is the resulting graph?
● We have O(1) nodes to give meaning to “true” 

and “false.”
● Each variable gives O(1) nodes for its true and 

false values.
● Each clause gives O(1) nodes for its colorability 

gadget.
● Collectively, if there are n clauses, there are 

O(n) variables.
● Total size of the graph is O(n).



  

Next Time

● The Big Picture
● How do all of our results relate to one 

another? 

● Where to Go from Here
● What's next in CS theory?
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