

NP-Completeness
Part II

Recap from Last Time

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard
NPC

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

 NP
P

NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: If L ∈ NPC, then L ∈ NP. Thus if L ∉ P, then L ∈ NP – P.
 This means that NP – P ≠ Ø, so P ≠ NP. ■

Satisfiability

● A propositional logic formula φ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the
variables of φ that makes it evaluate to
true is called a satisfying assignment.

Literals and Clauses
● A literal in propositional logic is a

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction)
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)

Conjunctive Normal Form

● A propositional logic formula φ is in
conjunctive normal form (CNF) if it is
the many-way AND (conjunction) of
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

Each clause must have
at least one

true literal in it.

Each clause must have
at least one

true literal in it.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

We should pick at least
one true literal from

each clause

We should pick at least
one true literal from

each clause

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

… subject to the constraint
that we never choose a literal

and its negation

… subject to the constraint
that we never choose a literal

and its negation

3-CNF

● A propositional formula is in 3-CNF if
● It is in CNF, and
● Every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● But not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF
formula }

Theorem: 3SAT is NP-Complete

NP-Completeness

P

 NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

Be Careful!

● To prove that some language L is NP-complete, show
that L ∈ NP, then reduce some known NP-complete
problem to L.

● Do not reduce L to a known NP-complete problem.

● We already knew you could do this; every NP problems is
reducible to any NP-complete problem!

P

 NP

NPC

So what other problems are NP-complete?

An independent set in an undirected graph
is a set of vertices that have no edges between them

The Independent Set Problem

● Given an undirected graph G and a
natural number n, the independent set
problem is

Does G contain an independent set
of size at least n?

● As a formal language:

INDSET = { ⟨G, n⟩ | G is an
undirected graph with an

independent set of size at least n }

INDSET ∈ NP

● The independent set problem is in NP.
● Here is a polynomial-time verifier that

checks whether S is an n-element
independent set:
● V = “On input ⟨⟨G, n⟩, S⟩:

– If |S| < n, reject.
– For each edge in G, if both endpoints are in S,

reject.
– Otherwise, accept.”

INDSET ∈ NPC

● The INDSET problem is NP-complete.
● To prove this, we will find a polynomial-time

reduction from 3SAT to INDSET.
● Goal: Given a 3CNF formula φ, build a graph
G and number n such that φ is satisfiable iff
G has an independent set of size n.

● How can we accomplish this?

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

Each clause must have
at least one

true literal in it.

Each clause must have
at least one

true literal in it.

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

We should pick at least one
true literal from each clause

We should pick at least one
true literal from each clause

The Structure of 3CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

… subject to the constraint
that we never choose a
literal and its negation

… subject to the constraint
that we never choose a
literal and its negation

From 3SAT to INDSET

● To convert a 3SAT instance φ to an INDSET
instance, we need a graph G and number n
such that an independent set of size at least n
in G
● gives us a way to choose which literal in each

clause of φ should be true,
● doesn't simultaneously choose a literal and its

negation, and
● has size polynomially large in the length of the

formula φ.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

We need a way to ensure we never
pick a literal and its negation.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

No independent set in this graph can
choose two nodes labeled x and ¬x.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If this graph has an independent set of
size three, the original formula is satisfiable.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = true, z = false.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = true, z = false.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.

From 3SAT to INDSET
● Let φ = C1 ∧ C2 ∧ … ∧ Cn be a 3-CNF formula.

● Construct the graph G as follows:
● For each clause Ci = x1 ∨ x2 ∨ x3, where x1, x2, and x3

are literals, add three new nodes into G with edges
connecting them.

● For each pair of nodes vi and ¬vi, where vi is some
variable, add an edge connecting vi and ¬vi. (Note
that there are multiple copies of these nodes)

● Claim One: This reduction can be computed in
polynomial time.

● Claim: G has an independent set of size n iff φ is
satisfiable.

Lemma: This reduction can be computed in
polynomial time.

Proof: Suppose that the original 3-CNF formula φ
has n clauses, each of which has three literals.
Then we construct 3n nodes in our graph.
Each clause contributes 3 edges, so there are
O(n) edges added from clauses. For each pair
of nodes representing opposite literals, we
introduce one edge. Since there are O(n2)
pairs of literals, this introduces at most O(n2)
new edges. This gives a graph with O(n) nodes
and O(n2) edges. Each node and edge can be
constructed in polynomial time, so overall this
reduction can be computed in polynomial time,
as required. ■

Lemma: If the graph G has an independent set of size n (where
n is the number of clauses in φ), then φ is satisfiable.

Proof: Suppose G has an independent set of size n, call if S. No
two nodes in S can correspond to v and ¬v for any variable
v, because there is an edge between all nodes with this
property. Thus for each variable v, either there is a node in
S with label v, or there is a node in S with label ¬v, or no
node in S has either label. In the first case, set v to true; in
the second case, set v to false; in the third case, choose a
value for v arbitrarily. We claim that this gives a satisfying
assignment for φ.

To see this, we show that each clause C in φ is satisfied. By
construction, no two nodes in S can come from nodes added
by C, because each has an edge to the other. Since there
are n nodes in S and n clauses in φ, for any clause in φ some
node corresponding to a literal from that clause is in S. If
that node has the form x, then C contains x, and since we
set x to true, C is satisfied. If that node has the form ¬x,
then C contains ¬x, and since we set x to false, C is
satisfied. Thus all clauses in φ are satisfied, so φ is satisfied
by this assignment. ■

Lemma: If φ is satisfiable and has n clauses, then G has an
independent set of size n.

Proof: Suppose that φ is satisfiable and consider any satisfying
assignment for it. Thus under that assignment, for each
clause C, there is some literal that evaluates to true. For
each clause C, choose some literal that evaluates to true
and add the corresponding node in G to a set S. Then S has
size n, since it contains one node per clause.

We claim moreover that S is an independent set in G. To see
this, note that there are two types of edges in G: edges
between nodes representing literals in the same clause, and
edges between variables and their negations. No two nodes
joined by edges within a clause are in S, because we
explicitly picked one node per clause. Moreover, no two
nodes joined by edges between opposite literals are in S,
because in a satisfying assignment both of the two could not
be true. Thus no nodes in S are joined by edges, so S is an
independent set. ■

Putting it All Together

Theorem: INDSET is NP-complete.

Proof: We know that INDSET ∈ NP, because we
constructed a polynomial-time verifier for it. So
all we need to show is that every problem in NP is
polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction
from 3SAT to INDSET that we just gave. As we
proved, φ ∈ 3SAT iff ⟨G, n⟩ ∈ INDSET, and this
reduction can be computed in polynomial time.
Thus 3SAT is polynomial-time reducible to
INDSET, so INDSET is NP-complete. ■

Time-Out For Announcements!

Final Exam Logistics

● Final exam rooms divvied up by last
name:
● Aba – Ber: Go to Hewlett 101
● Bil – Ell: Go to Hewlett 102
● Emb – Gra: Go to Hewlett 103
● Gre – Zuo: Go to Hewlett 200

● Review session: This Saturday from
2:15PM – 4:15PM in Gates 104.

Solutions Released

● We've posted solutions to the two
additional practice exams to the course
website.

● Have questions on the EC final exam?
Email the staff list, stop by office hours,
or stop by the review session!

Your Questions

“What do the eye and the path to the tree
mean in the NP slide the Friday before

break?”

NPN P

NP
Font: DejaVu

Serif

Font: DejaVu
Serif

NP
Font: WebdingsFont: Webdings

“Keith, during lecture you said that a
majority of computer scientists believe
that P ≠ NP. What do you think? What
degree of certainty would you assign to

your guess?”

“Is it possible that P = NP but it still takes
decades to find a decider for some specific

(currently) NP problem? Conversely, if
P ≠ NP, can we still find a decider for

some specific NP problem? If so, why not
just study specific problems?”

Back to CS103!

Structuring NP-Completeness Reductions

The Shape of a Reduction

● Polynomial-time reductions work by solving one
problem with a solver for a different problem.

● Most problems in NP have different pieces that must
be solved simultaneously.

● For example, in 3SAT:
● Each clause must be made true,
● but no literal and its complement may be picked.

● In INDSET:
● You can choose any nodes you want to put into the set,
● but no two connected nodes can be added.

Reductions and Gadgets

● Many reductions used to show
NP-completeness work by using
gadgets.

● Each piece of the original problem is
translated into a “gadget” that handles
some particular detail of the problem.

● These gadgets are then connected
together to solve the overall problem.

Gadgets in INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Each of these gadgets is designed
to solve one part of the problem:
ensuring each clause is satisfied.

Gadgets in INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

These connections ensure that the solutions
to each gadget are linked to one another.

Gadgets in INDSET

¬x

x

¬x

y

¬y

A More Complex Reduction

A 3-coloring of a graph is a way of coloring its
nodes one of three colors such that no two connected

nodes have the same color.

The 3-Coloring Problem

● The 3-coloring problem is

Given an undirected graph G,
is there a legal 3-coloring of its

nodes?
● As a formal language:

3COLOR = { ⟨G⟩ | G is an undirected
graph with a legal 3-coloring. }

● This problem is known to be NP-complete
by a reduction from 3SAT.

3COLOR ∈ NP

● We can prove that 3COLOR ∈ NP by
designing a polynomial-time
nondeterministic TM for 3COLOR.

● M = “On input ⟨G⟩:
● Nondeterministically guess an assignment

of colors to the nodes.
● Deterministically check whether it is a

3-coloring.
● If so, accept; otherwise reject.”

A Note on Terminology

● Although 3COLOR and 3SAT both have “3” in
their names, the two are very different
problems.
● 3SAT means “there are three literals in every

clause.” However, each literal can take on only
one of two different values.

● 3COLOR means “every node can take on one of
three different colors.”

● Key difference:
● In 3SAT variables have two choices of value.
● In 3COLOR nodes have three choices of value.

Why Not Two Colors?
● It would seem that 2COLOR (whether a graph

has a 2-coloring) would be a better fit.
● Every variable has one of two values.
● Every node has one of two values.

● Interestingly, 2COLOR is known to be in P and
is conjectured not to be NP-complete.
● Though, if you can prove that it is, you've just

won $1,000,000!

From 3SAT to 3COLOR

● In order to reduce 3SAT to 3COLOR, we need
to somehow make a graph that is 3-colorable
iff some 3-CNF formula φ is satisfiable.

● Idea: Use a collection of gadgets to solve the
problem.
● Build a gadget to assign two of the colors the

labels “true” and “false.”
● Build a gadget to force each variable to be either

true or false.
● Build a series of gadgets to force those variable

assignments to satisfy each clause.

Gadget One: Assigning Meanings

T F

O
These nodes
must all have
different
colors.

The color assigned to T will be interpreted as “true.”
The color assigned to F will be interpreted as “false.”

We do not associate any special meaning with O.

Gadget Two: Forcing a Choice

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x ¬x y ¬y z ¬z

T F

O

Gadget Three: Clause Satisfiability

(x ∨ y ∨ ¬z)

x y ¬zT F

This node is
colorable iff one
of the inputs is the
same color as T

Gadget Three: Clause Satisfiability

(x ∨ y ∨ ¬z)

x y ¬zT F

This node cannot
be colored

Gadget Three: Clause Satisfiability

(x ∨ y ∨ ¬z)

x y ¬zT F

Every other
combination of inputs
can give this a color

Putting It All Together

● Construct the first gadget so we have a
consistent definition of true and false.

● For each variable v:
● Construct nodes v and ¬v.
● Add an edge between v and ¬v.
● Add an edge between v and O and between ¬v

and O.

● For each clause C:
● Construct the earlier gadget from C by adding in

the extra nodes and edges.

Putting It All Together

C
1

C
2

… C
n

T F

O

x
1

¬x
1 x

k
¬x

k

Analyzing the Reduction

● How large is the resulting graph?
● We have O(1) nodes to give meaning to “true”

and “false.”
● Each variable gives O(1) nodes for its true and

false values.
● Each clause gives O(1) nodes for its colorability

gadget.
● Collectively, if there are n clauses, there are

O(n) variables.
● Total size of the graph is O(n).

Next Time

● The Big Picture
● How do all of our results relate to one

another?

● Where to Go from Here
● What's next in CS theory?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

