NP-Completeness Part II

Recap from Last Time

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.
- A language in L is called NP-complete iff L is NP-hard and $L \in \mathbf{N P}$.
- The class NPC is the set of NP-complete problems.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N} \mathbf{P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P} . \square$

The Tantalizing Truth

Theorem: If any NP-complete language is not in \mathbf{P}, then $\mathbf{P} \neq \mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$, then $L \in \mathbf{N P}$. Thus if $L \notin \mathbf{P}$, then $L \in \mathbf{N P}-\mathbf{P}$. This means that $\mathbf{N P}-\mathbf{P} \neq \varnothing$, so $\mathbf{P} \neq \mathbf{N P}$.

Satisfiability

- A propositional logic formula φ is called satisfiable if there is some assignment to its variables that makes it evaluate to true.
- $p \wedge q$ is satisfiable.
- $p \wedge \neg p$ is unsatisfiable.
- $p \rightarrow(q \wedge \neg q)$ is satisfiable.
- An assignment of true and false to the variables of φ that makes it evaluate to true is called a satisfying assignment.

Literals and Clauses

- A literal in propositional logic is a variable or its negation:
- X
- $\neg y$
- But not $x \wedge y$.
- A clause is a many-way OR (disjunction) of literals.
- $\neg \chi \vee y \vee \neg z$
- X
- But not $x \vee \neg(y \vee z)$

Conjunctive Normal Form

- A propositional logic formula φ is in conjunctive normal form (CNF) if it is the many-way AND (conjunction) of clauses.
- ($x \vee y \vee z) \wedge(\neg x \vee \neg y) \wedge(x \vee y \vee z \vee \neg w)$
- $x \vee z$
- But not $(x \vee(y \wedge z)) \vee(x \vee y)$
- Only legal operators are \neg, v, \wedge.
- No nesting allowed.

The Structure of CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Each clause must have at least one
true literal in it.

The Structure of CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

We should pick at least one true literal from each clause

The Structure of CNF

$(\underbrace{x \vee y \vee \neg z}) \wedge(\underbrace{\neg x \vee \neg y \vee z}) \wedge(\underbrace{\neg x \vee y \vee \neg z})$
... subject to the constraint
that we never choose a literal and its negation

3-CNF

- A propositional formula is in 3-CNF if
- It is in CNF, and
- Every clause has exactly three literals.
- For example:
- ($x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z)$
- ($x \vee x \vee x) \wedge(y \vee \neg y \vee \neg x) \wedge(x \vee y \vee \neg y)$
- But not ($x \vee y \vee z \vee w) \wedge(x \vee y)$
- The language 3SAT is defined as follows:

3SAT $=\{\langle\varphi\rangle \mid \varphi$ is a satisfiable 3-CNF formula \}

Theorem: 3SAT is NP-Complete

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

P

NP

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If
$L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP
P

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If
$L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{p}} L_{2}$, then $L_{2} \in$ NPC.

NP

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{p}} L_{2}$, then $L_{2} \in$ NPC.

NP

NPC

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{p}} L_{2}$, then $L_{2} \in$ NPC.

NP

P

Be Careful!

- To prove that some language L is NP-complete, show that $L \in \mathbf{N P}$, then reduce some known NP-complete problem to L.
- Do not reduce L to a known NP-complete problem.
- We already knew you could do this; every NP problems is reducible to any NP-complete problem!

Be Careful!

- To prove that some language L is NP-complete, show that $L \in \mathbf{N P}$, then reduce some known NP-complete problem to L.
- Do not reduce L to a known NP-complete problem.
- We already knew you could do this; every NP problems is reducible to any NP-complete problem!

Be Careful!

- To prove that some language L is NP-complete, show that $L \in \mathbf{N P}$, then reduce some known NP-complete problem to L.
- Do not reduce L to a known NP-complete problem.
- We already knew you could do this; every NP problems is reducible to any NP-complete problem!

So what other problems are NP-complete?

An independent set in an undirected graph is a set of vertices that have no edges between them

An independent set in an undirected graph is a set of vertices that have no edges between them

An independent set in an undirected graph is a set of vertices that have no edges between them

An independent set in an undirected graph is a set of vertices that have no edges between them

An independent set in an undirected graph is a set of vertices that have no edges between them

The Independent Set Problem

- Given an undirected graph G and a natural number n, the independent set problem is

Does G contain an independent set of size at least n ?

- As a formal language:

INDSET $=\{\langle G, n\rangle \mid G$ is an undirected graph with an independent set of size at least $\boldsymbol{n}\}$

$I N D S E T \in \mathbf{N P}$

- The independent set problem is in NP.
- Here is a polynomial-time verifier that checks whether S is an n-element independent set:
- $V=$ "On input $\langle\langle G, n\rangle, S\rangle$:
- If $|S|<n$, reject.
- For each edge in G, if both endpoints are in S, reject.
- Otherwise, accept."

INDSET $\in \mathbf{N P C}$

- The INDSET problem is NP-complete.
- To prove this, we will find a polynomial-time reduction from 3SAT to $I N D S E T$.
- Goal: Given a 3CNF formula φ, build a graph G and number n such that φ is satisfiable iff G has an independent set of size n.
- How can we accomplish this?

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$

The Structure of 3CNF

$$
(x \vee y \text { v } \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$

The Structure of 3CNF

$$
(x \vee y \quad \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Each clause must have
at least one true literal in it.

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)
$$

The Structure of 3CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

We should pick at least one true literal from each clause

The Structure of 3CNF

$$
(\underbrace{x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z) ~}
$$

The Structure of 3CNF

$$
(\underbrace{x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z) ~}
$$

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

The Structure of 3CNF

$(\underbrace{x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z) ~}$

The Structure of 3CNF

... subject to the constraint
that we never choose a
literal and its negation

From 3SAT to INDSET

- To convert a 3SAT instance φ to an INDSET instance, we need a graph G and number n such that an independent set of size at least n in G
- gives us a way to choose which literal in each clause of φ should be true,
- doesn't simultaneously choose a literal and its negation, and
- has size polynomially large in the length of the formula φ.

From 3SAT to INDSET

$$
(x \vee y \text { v } \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$

From 3SAT to INDSET

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(\underbrace{x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z) ~}$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(\underbrace{x \vee y \vee \neg z) \wedge(\underbrace{\sim} \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z) ~}$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

We need a way to ensure we never pick a literal and its negation.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

No independent set in this graph can choose two nodes labeled \boldsymbol{x} and $\boldsymbol{\neg \boldsymbol { x }}$.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\text { false, } y=\text { false, } z=\text { false. }
$$

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\operatorname{true}, y=\text { true, } z=\text { true. }
$$

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(\underbrace{x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z) ~}$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\text { false, } y=? ?, z=\text { false }
$$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\text { false, } y=\text { true, } z=\text { false. }
$$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$x=$ false, $y=$ false, $z=$ false.

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

$x=$ false, $y=$ true, $z=$ false.
$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

$x=$ false,$y=$ true, $z=$ false.
$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

$x=$ false,$y=$ true, $z=$ false.
$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

- Let $\varphi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}$ be a 3-CNF formula.
- Construct the graph G as follows:
- For each clause $C_{i}=x_{1} \vee x_{2} \vee x_{3}$, where x_{1}, x_{2}, and x_{3} are literals, add three new nodes into G with edges connecting them.
- For each pair of nodes v_{i} and $\neg v_{\mathrm{i}}$, where v_{i} is some variable, add an edge connecting ν_{i} and $\neg \nu_{\mathrm{i}}$. (Note that there are multiple copies of these nodes)
- Claim One: This reduction can be computed in polynomial time.
- Claim: G has an independent set of size $n \operatorname{iff} \varphi$ is satisfiable.

Lemma: This reduction can be computed in polynomial time.

Proof: Suppose that the original 3-CNF formula φ has n clauses, each of which has three literals. Then we construct 3n nodes in our graph. Each clause contributes 3 edges, so there are $\mathrm{O}(n)$ edges added from clauses. For each pair of nodes representing opposite literals, we introduce one edge. Since there are $O\left(n^{2}\right)$ pairs of literals, this introduces at most $\mathrm{O}\left(n^{2}\right)$ new edges. This gives a graph with $\mathrm{O}(n)$ nodes and $O\left(n^{2}\right)$ edges. Each node and edge can be constructed in polynomial time, so overall this reduction can be computed in polynomial time, as required.

Lemma: If the graph G has an independent set of size n (where n is the number of clauses in φ), then φ is satisfiable.
Proof: Suppose G has an independent set of size n, call if S. No two nodes in S can correspond to v and $\neg v$ for any variable v, because there is an edge between all nodes with this property. Thus for each variable v, either there is a node in S with label v, or there is a node in S with label $\neg v$, or no node in S has either label. In the first case, set v to true; in the second case, set v to false; in the third case, choose a value for v arbitrarily. We claim that this gives a satisfying assignment for φ.
To see this, we show that each clause C in φ is satisfied. By construction, no two nodes in S can come from nodes added by C, because each has an edge to the other. Since there are n nodes in S and n clauses in φ, for any clause in φ some node corresponding to a literal from that clause is in S. If that node has the form x, then C contains x, and since we set x to true, C is satisfied. If that node has the form $\neg x$, then C contains $\neg \chi$, and since we set x to false, C is satisfied. Thus all clauses in φ are satisfied, so φ is satisfied by this assignment.

Lemma: If φ is satisfiable and has n clauses, then G has an independent set of size n.

Proof: Suppose that φ is satisfiable and consider any satisfying assignment for it. Thus under that assignment, for each clause C, there is some literal that evaluates to true. For each clause C, choose some literal that evaluates to true and add the corresponding node in G to a set S. Then S has size n, since it contains one node per clause.

We claim moreover that S is an independent set in G. To see this, note that there are two types of edges in G : edges between nodes representing literals in the same clause, and edges between variables and their negations. No two nodes joined by edges within a clause are in S, because we explicitly picked one node per clause. Moreover, no two nodes joined by edges between opposite literals are in S, because in a satisfying assignment both of the two could not be true. Thus no nodes in S are joined by edges, so S is an independent set.

Putting it All Together

Theorem: INDSET is NP-complete.
Proof: We know that INDSET \in NP, because we constructed a polynomial-time verifier for it. So all we need to show is that every problem in NP is polynomial-time reducible to INDSET.

To do this, we use the polynomial-time reduction from 3SAT to INDSET that we just gave. As we proved, $\varphi \in$ 3SAT iff $\langle\mathrm{G}, \mathrm{n}\rangle \in \operatorname{INDSET}$, and this reduction can be computed in polynomial time. Thus 3SAT is polynomial-time reducible to INDSET, so INDSET is NP-complete.

Time-Out For Announcements!

Final Exam Logistics

- Final exam rooms divvied up by last name:
- Aba - Ber: Go to Hewlett 101
- Bil - Ell: Go to Hewlett 102
- Emb - Gra: Go to Hewlett 103
- Gre - Zuo: Go to Hewlett 200
- Review session: This Saturday from 2:15PM - 4:15PM in Gates 104.

Solutions Released

- We've posted solutions to the two additional practice exams to the course website.
- Have questions on the EC final exam? Email the staff list, stop by office hours, or stop by the review session!

Your Questions

"What do the eye and the path to the tree mean in the NP slide the Friday before break?"

Font: DejaVu Serif

Font: Webdings
"Keith, during lecture you said that a majority of computer scientists believe that $\mathbf{P} \neq \mathbf{N P}$. What do you think? What degree of certainty would you assign to your guess?"
"Is it possible that $\mathbf{P}=\mathbf{N P}$ but it still takes decades to find a decider for some specific (currently) NP problem? Conversely, if $\mathbf{P} \neq \mathbf{N P}$, can we still find a decider for some specific NP problem? If so, why not just study specific problems?"

Back to CS103!

Structuring NP-Completeness Reductions

The Shape of a Reduction

- Polynomial-time reductions work by solving one problem with a solver for a different problem.
- Most problems in NP have different pieces that must be solved simultaneously.
- For example, in 3SAT:
- Each clause must be made true,
- but no literal and its complement may be picked.
- In INDSET:
- You can choose any nodes you want to put into the set,
- but no two connected nodes can be added.

Reductions and Gadgets

- Many reductions used to show NP-completeness work by using gadgets.
- Each piece of the original problem is translated into a "gadget" that handles some particular detail of the problem.
- These gadgets are then connected together to solve the overall problem.

Gadgets in INDSET

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadgets in INDSET

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$
7y
y

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Gadgets in INDSET

Each of these gadgets is designed to solve one part of the problem:
ensuring each clause is satisfied.

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

These connections ensure that the solutions to each gadget are linked to one another.

Gadgets in INDSET

A More Complex Reduction

A 3-coloring of a graph is a way of coloring its nodes one of three colors such that no two connected nodes have the same color.

A 3-coloring of a graph is a way of coloring its nodes one of three colors such that no two connected nodes have the same color.

A 3-coloring of a graph is a way of coloring its nodes one of three colors such that no two connected nodes have the same color.

The 3-Coloring Problem

- The 3-coloring problem is

Given an undirected graph G, is there a legal 3-coloring of its nodes?

- As a formal language: 3COLOR $=\{\langle G\rangle \mid G$ is an undirected
graph with a legal 3-coloring. $\}$
- This problem is known to be NP-complete by a reduction from 3SAT.

$3 C O L O R \in \mathbf{N P}$

- We can prove that 3COLOR \in NP by designing a polynomial-time nondeterministic TM for 3COLOR.
- $\mathrm{M}=$ " On input $\langle G\rangle$:
- Nondeterministically guess an assignment of colors to the nodes.
- Deterministically check whether it is a 3-coloring.
- If so, accept; otherwise reject."

A Note on Terminology

- Although 3COLOR and 3SAT both have " 3 " in their names, the two are very different problems.
- 3SAT means "there are three literals in every clause." However, each literal can take on only one of two different values.
- 3COLOR means "every node can take on one of three different colors."
- Key difference:
- In 3SAT variables have two choices of value.
- In 3COLOR nodes have three choices of value.

Why Not Two Colors?

- It would seem that 2COLOR (whether a graph has a 2-coloring) would be a better fit.
- Every variable has one of two values.
- Every node has one of two values.
- Interestingly, 2COLOR is known to be in \mathbf{P} and is conjectured not to be NP-complete.
- Though, if you can prove that it is, you've just won $\$ 1,000,000$!

From 3SAT to 3COLOR

- In order to reduce 3SAT to 3COLOR, we need to somehow make a graph that is 3-colorable iff some 3-CNF formula φ is satisfiable.
- Idea: Use a collection of gadgets to solve the problem.
- Build a gadget to assign two of the colors the labels "true" and "false."
- Build a gadget to force each variable to be either true or false.
- Build a series of gadgets to force those variable assignments to satisfy each clause.

Gadget One: Assigning Meanings

Gadget One: Assigning Meanings

These nodes
must all have different colors.

Gadget One: Assigning Meanings

These nodes
must all have different colors.

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with 0 .

Gadget One: Assigning Meanings

These nodes
must all have different colors.

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with 0 .

Gadget One: Assigning Meanings

These nodes
must all have different colors.

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with 0 .

Gadget One: Assigning Meanings

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with 0 .

Gadget Two: Forcing a Choice

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$

z
ᄀZ

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$ F

z
ᄀZ

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$ F

z

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$ F

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$

z
ᄀZ

Gadget Two: Forcing a Choice

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$
$T \quad F$

z
ᄀZ

Gadget Two: Forcing a Choice

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$ F

z
$\neg Z$

Gadget Two: Forcing a Choice

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$ F

z

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \text { v } \neg z)
$$

Gadget Three: Clause Satisfiability

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \text { v } \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \text { v } \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \text { v } \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \text { v } \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \text { v } \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

Gadget Three: Clause Satisfiability

Putting It All Together

- Construct the first gadget so we have a consistent definition of true and false.
- For each variable v :
- Construct nodes v and $\neg v$.
- Add an edge between v and $\neg v$.
- Add an edge between v and O and between $\neg v$ and 0 .
- For each clause C :
- Construct the earlier gadget from C by adding in the extra nodes and edges.

Putting It All Together

Analyzing the Reduction

- How large is the resulting graph?
- We have $O(1)$ nodes to give meaning to "true" and "false."
- Each variable gives $O(1)$ nodes for its true and false values.
- Each clause gives O(1) nodes for its colorability gadget.
- Collectively, if there are n clauses, there are O(n) variables.
- Total size of the graph is $\mathrm{O}(n)$.

Next Time

- The Big Picture
- How do all of our results relate to one another?
- Where to Go from Here
- What's next in CS theory?

