NP-Completeness

Recap from Last Time

Analyzing NTMs

• When discussing deterministic TMs, the notion of time complexity is (reasonably) straightforward.

• **Recall:** One way of thinking about nondeterminism is

as a tree.

• The time complexity is the height of the tree (the length of the **longest** possible choice we could make).

• Intuition: If you ran all possible branches in parallel, how long would it take before all branches completed?

The Complexity Class NP

- The complexity class NP
 (nondeterministic polynomial time)
 contains all problems that can be solved in polynomial time by an NTM.
- Formally:

```
\mathbf{NP} = \{ L \mid \text{There is a nondeterministic} \\ \text{TM that decides } L \text{ in} \\ \text{polynomial time.} \}
```

Another View of NP

- **Theorem:** $L \in \mathbf{NP}$ iff there is a *deterministic* TM V with the following properties:
 - $w \in L$ iff there is some $c \in \Sigma^*$ such that V accepts $\langle w, c \rangle$.
 - V runs in time polynomial in |w|.
- Some terminology:
 - A TM V with the above property is called a polynomial-time verifier for L.
 - The string *c* is called a **certificate** for *w*.
 - You can think of V as checking the certificate that proves $w \in L$.

NP and Reductions

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{NP}$.
- Suppose that $A \leq_{\mathbb{P}} B$ and that the reduction f can be computed in time $O(n^k)$.
- Then $A \in \mathbf{NP}$ as well.

A Sample Reduction

$$U = \{1, 2, 3, 4, 5, 6\}$$

$$S = \left\{ \begin{array}{l} \left\{ 1, 2, 5 \right\}, \left\{ 2, 5 \right\}, \left\{ 1, 3, 6 \right\}, \\ \left\{ 2, 3, 4 \right\}, \left\{ 4 \right\}, \left\{ 1, 5, 6 \right\} \end{array} \right\}$$

Let U be a set of elements (the **universe**) and $S \subseteq \wp(U)$. An **exact covering** of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.

$$U = \{1, 2, 3, 4, 5, 6\}$$

$$S = \left\{ \begin{array}{l} \left\{ 1, 2, 5 \right\}, \left\{ 2, 5 \right\}, \left\{ 1, 3, 6 \right\}, \\ \left\{ 2, 3, 4 \right\}, \left\{ 4 \right\}, \left\{ 1, 5, 6 \right\} \end{array} \right\} \right\}$$

Let U be a set of elements (the **universe**) and $S \subseteq \wp(U)$. An **exact covering** of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.

Exact Covering

• Given a universe U and a set $S \subseteq \wp(U)$, the exact covering problem is

Does S contain an exact covering of U?

As a formal language:

```
EXACT-COVER = \{ \langle U, S \rangle \mid S \subseteq \wp(U) \text{ and } S \text{ contains an exact } covering of U \}
```

$EXACT-COVER \in \mathbf{NP}$

- Here is a polynomial-time verifier for *EXACT-COVER*:
- V = "On input $\langle U, S, I \rangle$, where U, S, and I are sets:
 - Verify that every set in *S* is a subset of *U*.
 - Verify that every set in *I* is an element of *S*.
 - Verify that every element of *U* belongs to an element of *I*.
 - Verify that every element of U belongs to at most one element of I."

Applications of Exact Covering


```
{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }
```

```
{ M, 1, 4, 7 }
{ M, 2, 5, 8 }
{ M, 3, 6, 9 }
```

• • •

Trust me, these reductions matter.

We'll see why in a few minutes.

The

Most Important Question in

Theoretical Computer Science

 $\mathbf{P} = \{ L \mid \text{There is a polynomial-time decider for } L \}$

 $\mathbf{NP} = \{ L \mid \text{There is a nondeterministic} \\ \text{polynomial-time decider for } L \}$

 $P \subseteq NP$

Which Picture is Correct?

Which Picture is Correct?

Does P = NP?

$\mathbf{P} \stackrel{?}{=} \mathbf{NP}$

- The $P \stackrel{?}{=} NP$ question is the most important question in theoretical computer science.
- With the verifier definition of NP, one way of phrasing this question is

If a solution to a problem can be **verified** efficiently, can that problem be **solved** efficiently?

• An answer either way will give fundamental insights into the nature of computation.

Why This Matters

- The following problems are known to be efficiently verifiable, but have no known efficient solutions:
 - Determining whether an electrical grid can be built to link up some number of houses for some price (Steiner tree problem).
 - Determining whether a simple DNA strand exists that multiple gene sequences could be a part of (shortest common supersequence).
 - Determining the best way to assign hardware resources in a compiler (optimal register allocation).
 - Determining the best way to distribute tasks to multiple workers to minimize completion time (job scheduling).
 - And many more.
- If P = NP, all of these problems have efficient solutions.
- If $P \neq NP$, none of these problems have efficient solutions.

Why This Matters

• If P = NP:

- A huge number of seemingly difficult problems could be solved efficiently.
- Our capacity to solve many problems will scale well with the size of the problems we want to solve.

• If $P \neq NP$:

- Enormous computational power would be required to solve many seemingly easy tasks.
- Our capacity to solve problems will fail to keep up with our curiosity.

What We Know

- Resolving **P** $\stackrel{?}{=}$ **NP** has proven *extremely difficult*.
- In the past 35 years:
 - Not a single correct proof either way has been found.
 - Many types of proofs have been shown to be insufficiently powerful to determine whether
 P = NP.
 - A majority of computer scientists believe P ≠ NP, but this isn't a large majority.
- Interesting read: Interviews with leading thinkers about P ² NP:
 - http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question CHALLENGE ACCEPTED

The Clay Mathematics Institute has offered a \$1,000,000 prize to anyone who proves or disproves $\mathbf{P} = \mathbf{NP}$.

Time-Out For Announcements

Please evaluate this course in Axess.

Your feedback really does make a difference.

Final Exam Logistics

- Final exam is this upcoming Monday, December 9th from 12:15PM 3:15PM.
- Room information TBA; we're still finalizing everything.
- Exam is cumulative, but focuses primarily on material from DFAs onward.
 - Take a look a the practice exams for a sense of what the coverage will be like.

Practice Finals

- We have three practice exams available right now:
 - An extra credit practice exam worth +5 EC points.
 - Two actual final exams from previous quarters, which are good for studying but not worth any extra credit.
- Solutions to the two additional practice finals will be released Wednesday.
- Please take the additional final exams under realistic conditions so that you can get a sense of where you stand. Most of the problems are "nondeterministically trivial."

A Note on Honesty and Integrity

Review Sessions

- We will be holding at least one final exam review session later this week.
- We will announce date and time information once it's finalized.
- Feel free to show up with any questions you'd like answered!

Casual CS Dinner

- The second biquarterly Casual CS Dinner for Women in CS is tonight at 6PM on the fifth floor of Gates.
- Everyone is welcome!
- RSVP appreciated; check the email sent to the CS103 list.

Back to CS103!

NP-Completeness

Polynomial-Time Reductions

- If $L_1 \leq_{\mathbf{P}} L_2$ and $L_2 \in \mathbf{P}$, then $L_1 \in \mathbf{P}$.
- If $L_1 \leq_{P} L_2$ and $L_2 \in \mathbf{NP}$, then $L_1 \in \mathbf{NP}$.

NP-Hardness

- A language L is called **NP-hard** iff for *every* $L' \in \mathbf{NP}$, we have $L' \leq_{p} L$.
- A language in L is called **NP-complete** iff L is **NP**-hard and $L \in \mathbf{NP}$.
- The class **NPC** is the set of **NP**-complete problems.

The Tantalizing Truth

Theorem: If *any* NP-complete language is in P, then P = NP.

Proof: If $L \in \mathbf{NPC}$ and $L \in \mathbf{P}$, we know for any $L' \in \mathbf{NP}$ that $L' \leq_{\mathbf{P}} L$, because L is \mathbf{NP} -complete. Since $L' \leq_{\mathbf{P}} L$ and $L \in \mathbf{P}$, this means that $L' \in \mathbf{P}$ as well. Since our choice of L' was arbitrary, any language $L' \in \mathbf{NP}$ satisfies $L' \in \mathbf{P}$, so $\mathbf{NP} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{NP}$, this means $\mathbf{P} = \mathbf{NP}$.

The Tantalizing Truth

Theorem: If *any* NP-complete language is not in P, then $P \neq NP$.

Proof: If $L \in \mathbf{NPC}$, then $L \in \mathbf{NP}$. Thus if $L \notin \mathbf{P}$, then $L \in \mathbf{NP} - \mathbf{P}$. This means that $\mathbf{NP} - \mathbf{P} \neq \emptyset$, so $\mathbf{P} \neq \mathbf{NP}$.

A Feel for NP-Completeness

- If a problem is \mathbf{NP} -complete, then under the assumption that $\mathbf{P} \neq \mathbf{NP}$, there cannot be an efficient algorithm for it.
- In a sense, **NP**-complete problems are the hardest problems in **NP**.
- All known **NP**-complete problems are enormously hard to solve:
 - All known algorithms for **NP**-complete problems run in worst-case exponential time.
 - Most algorithms for **NP**-complete problems are infeasible for reasonably-sized inputs.

How do we even know NP-complete problems exist in the first place?

Satisfiability

- A propositional logic formula φ is called satisfiable if there is some assignment to its variables that makes it evaluate to true.
 - $p \land q$ is satisfiable.
 - $p \land \neg p$ is unsatisfiable.
 - $p \rightarrow (q \land \neg q)$ is satisfiable.
- An assignment of true and false to the variables of ϕ that makes it evaluate to true is called a **satisfying assignment**.

SAT

 The boolean satisfiability problem (SAT) is the following:

Given a propositional logic formula φ, is φ satisfiable?

• Formally:

SAT = $\{ \langle \phi \rangle \mid \phi \text{ is a satisfiable PL} \}$

Theorem (Cook-Levin): SAT is NP-complete.

A Simpler **NP**-Complete Problem

Literals and Clauses

- A **literal** in propositional logic is a variable or its negation:
 - X
 - ¬y
 - But not $x \wedge y$.
- A **clause** is a many-way OR (*disjunction*) of literals.
 - $\neg x \lor y \lor \neg z$
 - X
 - But not $x \lor \neg(y \lor z)$

Conjunctive Normal Form

- A propositional logic formula φ is in **conjunctive normal form** (**CNF**) if it is the many-way AND (*conjunction*) of clauses.
 - $(x \lor y \lor z) \land (\neg x \lor \neg y) \land (x \lor y \lor z \lor \neg w)$
 - x V Z
 - But not $(x \lor (y \land z)) \lor (x \lor y)$
- Only legal operators are ¬, ∨, ∧.
- No nesting allowed.

The Structure of CNF

The Structure of CNF

The Structure of CNF

3-CNF

- A propositional formula is in 3-CNF if
 - It is in CNF, and
 - Every clause has *exactly* three literals.
- For example:
 - $(x \lor y \lor z) \land (\neg x \lor \neg y \lor z)$
 - $(x \lor x \lor x) \land (y \lor \neg y \lor \neg x) \land (x \lor y \lor \neg y)$
 - But not $(x \lor y \lor z \lor w) \land (x \lor y)$
- The language 3SAT is defined as follows:

3SAT = $\{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3-CNF formula } \}$

Theorem: 3SAT is **NP**-Complete

Using the Cook-Levin Theorem

- When discussing decidability, we used the fact that $A_{TM} \notin \mathbf{R}$ as a starting point for finding other undecidable languages.
 - Idea: Reduce A_{TM} to some other language.
- When discussing NP-completeness, we will use the fact that 3SAT ∈ NPC as a starting point for finding other NPC languages.
 - Idea: Reduce 3SAT to some other language.

NP-Completeness

Theorem: Let L_1 and L_2 be languages. If $L_1 \leq_{\mathbb{P}} L_2$ and L_1 is **NP**-hard, then L_2 is **NP**-hard.

Theorem: Let L_1 and L_2 be languages where $L_1 \in \mathbf{NPC}$ and $L_2 \in \mathbf{NP}$. If $L_1 \leq_P L_2$, then $L_2 \in \mathbf{NPC}$.

Next Time

- More NP-Complete Problems
 - Independent Sets
 - Graph Coloring
- Applied Complexity Theory (ITA)
 - Why does all of this matter?