
  

NP-Completeness



  

Recap from Last Time



  

Analyzing NTMs

● When discussing deterministic TMs, the notion of time 
complexity is (reasonably) straightforward.

● Recall: One way of thinking about nondeterminism is 
as a tree.

● The time complexity is the height of the
tree (the length of the longest possible
choice we could make).

● Intuition: If you ran all possible
branches in parallel, how long would
it take before all branches completed?



  

The Complexity Class NP

● The complexity class NP 
(nondeterministic polynomial time) 
contains all problems that can be solved 
in polynomial time by an NTM.

● Formally:

NP = { L | There is a nondeterministic
         TM that decides L in 

     polynomial time. }



  

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V 
with the following properties:

● w ∈ L  iff  there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Some terminology:

● A TM V with the above property is called a 
polynomial-time verifier for L.

● The string c is called a certificate for w.
● You can think of V as checking the certificate 

that proves w ∈ L.



  

NP and Reductions



  

Polynomial-Time Reductions

A

Solvable?
 

B

Solvable by
NTM in O(nr)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f 
can be computed in time O(nk).
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Polynomial-Time Reductions
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B

Solvable by
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Compute f(w)

f(w) ∈ B  iff  w ∈ A

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f 
can be computed in time O(nk).

● Then A ∈ NP as well.
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A Sample Reduction



  

Let U be a set of elements (the universe) 
and S ⊆ (℘ U).  An exact covering of U is a 

collection of sets I ⊆ S such that every 
element of U belongs to exactly one set in I.
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Exact Covering

● Given a universe U and a set S ⊆ (℘ U), the 
exact covering problem is

Does S contain an
exact covering of U?

● As a formal language:

EXACT-COVER = 
             { ⟨U, S⟩ | S ⊆ (℘ U) and
                            S contains an exact
                            covering of U }



  

EXACT-COVER ∈ NP

● Here is a polynomial-time verifier for 
EXACT-COVER:

● V = “On input ⟨U, S, I⟩, where U, S, and
         I are sets:
● Verify that every set in S is a subset of U.
● Verify that every set in I is an element of S.
● Verify that every element of U belongs to an element 

of I.
● Verify that every element of U belongs to at most one 

element of I.”



  

Applications of Exact Covering
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Trust me, these reductions matter.

We'll see why in a few minutes.



  

The
 

Most Important Question
 

in
 

Theoretical Computer Science



  

What is the connection between P and NP?



  

       P = { L | There is a polynomial-time
                       decider for L }

 NP = { L | There is a nondeterministic
                   polynomial-time decider for L }

P ⊆ NP



  

P NP

Which Picture is Correct?



  

P NP
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Does P = NP?



  

P  ≟ NP

● The P ≟ NP question is the most important question in 
theoretical computer science.

● With the verifier definition of NP, one way of phrasing 
this question is

If a solution to a problem can be verified efficiently,
can that problem be solved efficiently?

● An answer either way will give fundamental insights 
into the nature of computation.



  

Why This Matters

● The following problems are known to be efficiently 
verifiable, but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up 
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple 
gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.



  

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems 

could be solved efficiently.
● Our capacity to solve many problems will scale 

well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be 

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

What We Know

● Resolving P  ≟ NP has proven extremely difficult.

● In the past 35 years:
● Not a single correct proof either way has been 

found.
● Many types of proofs have been shown to be 

insufficiently powerful to determine whether 
P = NP.

● A majority of computer scientists believe P ≠ NP, 
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers 
about P  ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has 
offered a $1,000,000 prize to anyone who 

proves or disproves P = NP.
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Time-Out For Announcements



  

Please evaluate this course in Axess.

Your feedback really does make a 
difference.



  

Final Exam Logistics

● Final exam is this upcoming Monday, 
December 9th from 12:15PM – 3:15PM.

● Room information TBA; we're still 
finalizing everything.

● Exam is cumulative, but focuses 
primarily on material from DFAs onward.
● Take a look a the practice exams for a sense 

of what the coverage will be like.



  

Practice Finals

● We have three practice exams available right now:
● An extra credit practice exam worth +5 EC points.
● Two actual final exams from previous quarters, 

which are good for studying but not worth any extra 
credit.

● Solutions to the two additional practice finals will 
be released Wednesday.

● Please take the additional final exams under 
realistic conditions so that you can get a sense 
of where you stand. Most of the problems are 
“nondeterministically trivial.”



  

A Note on Honesty and Integrity



  

Review Sessions

● We will be holding at least one final exam 
review session later this week.

● We will announce date and time 
information once it's finalized.

● Feel free to show up with any questions 
you'd like answered!



  

Casual CS Dinner

● The second biquarterly Casual CS Dinner 
for Women in CS is tonight at 6PM on 
the fifth floor of Gates.

● Everyone is welcome!
● RSVP appreciated; check the email sent 

to the CS103 list.



  

Back to CS103!



  

NP-Completeness
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NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP NP-Hard



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP NP-Hard



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP NP-Hard

Intuitively: L has to be at least as 
hard as every problem in NP, since 
an algorithm for L can be used to 

decide all problems in NP.

Intuitively: L has to be at least as 
hard as every problem in NP, since 
an algorithm for L can be used to 

decide all problems in NP.



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP NP-Hard



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP NP-Hard

What's in here?What's in here?



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

      NP NP-Hard



  

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we 
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

      NP NP-Hard
NPC



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■



  

The Tantalizing Truth

      NP
P

NPC
P

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■



  

The Tantalizing Truth

      NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■



  

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
            L' ≤P L, because L is NP-complete.  Since L' ≤P L and
            L ∈ P, this means that L' ∈ P as well.  Since our choice of
            L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
            NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

      NP
P

NPC
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The Tantalizing Truth
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Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: If L ∈ NPC, then L ∈ NP.  Thus if L ∉ P, then L ∈ NP – P. 
            This means that NP – P ≠ Ø, so P ≠ NP. ■ 



  

A Feel for NP-Completeness

● If a problem is NP-complete, then under the 
assumption that P ≠ NP, there cannot be an 
efficient algorithm for it.

● In a sense, NP-complete problems are the 
hardest problems in NP.

● All known NP-complete problems are 
enormously hard to solve:
● All known algorithms for NP-complete problems 

run in worst-case exponential time.
● Most algorithms for NP-complete problems are 

infeasible for reasonably-sized inputs.



  

How do we even know NP-complete
problems exist in the first place?



  

Satisfiability

● A propositional logic formula φ is called 
satisfiable if there is some assignment to 
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the 
variables of φ that makes it evaluate to 
true is called a satisfying assignment.



  

SAT

● The boolean satisfiability problem 
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL     
formula }



  

Theorem (Cook-Levin): SAT is NP-complete.



  

A Simpler NP-Complete Problem



  

Literals and Clauses
● A literal in propositional logic is a 

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction) 
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)



  

Conjunctive Normal Form

● A propositional logic formula φ is in 
conjunctive normal form (CNF) if it is 
the many-way AND (conjunction) of 
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

Each clause must have 
at least one

true literal in it.

Each clause must have 
at least one

true literal in it.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

We should pick at least 
one true literal from 

each clause

We should pick at least 
one true literal from 

each clause



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

… subject to the constraint 
that we never choose a literal

and its negation

… subject to the constraint 
that we never choose a literal

and its negation



  

3-CNF

● A propositional formula is in 3-CNF if
● It is in CNF, and
● Every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● But not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF 
formula }



  

Theorem: 3SAT is NP-Complete



  

Using the Cook-Levin Theorem

● When discussing decidability, we used 
the fact that ATM ∉ R as a starting point 
for finding other undecidable languages.
● Idea: Reduce ATM to some other language.

● When discussing NP-completeness, we 
will use the fact that 3SAT ∈ NPC as a 
starting point for finding other NPC 
languages.
● Idea: Reduce 3SAT to some other language.



  

NP-Completeness
Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.
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Next Time

● More NP-Complete Problems
● Independent Sets
● Graph Coloring

● Applied Complexity Theory (ITA)
● Why does all of this matter?
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