NP-Completeness

Recap from Last Time

Analyzing NTMs

- When discussing deterministic TMs, the notion of time complexity is (reasonably) straightforward.
- Recall: One way of thinking about nondeterminism is as a tree.
- The time complexity is the height of the tree (the length of the longest possible choice we could make).
- Intuition: If you ran all possible branches in parallel, how long would it take before all branches completed?

The Complexity Class NP

- The complexity class NP (nondeterministic polynomial time) contains all problems that can be solved in polynomial time by an NTM.
- Formally:
$\mathbf{N P}=\{L \mid$ There is a nondeterministic
TM that decides L in
polynomial time. $\}$

Another View of NP

- Theorem: $L \in$ NP iff there is a deterministic TM V with the following properties:
- $w \in L$ iff there is some $c \in \Sigma^{*}$ such that V accepts $\langle w, c\rangle$.
- V runs in time polynomial in $|w|$.
- Some terminology:
- A TM V with the above property is called a polynomial-time verifier for L.
- The string c is called a certificate for w.
- You can think of V as checking the certificate that proves $w \in L$.

NP and Reductions

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.

B

Solvable by NTM in $\mathrm{O}\left(n^{r}\right)$

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.

Input size: \boldsymbol{n}

B

Solvable by NTM in O(n^{r})

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.

Input size: \boldsymbol{n}

| A |
| :---: | :---: |
| Solvable? | | Compute $f(w)$ |
| :---: |
| $\left.\begin{array}{c}\text { Solvable by } \\ \text { NTM in O(} n\end{array}\right)$ |

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.

Input size: \boldsymbol{n} Time required: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.

Input size: \boldsymbol{n}

Time required: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$ Input size: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.

Input size: \boldsymbol{n}

Time required: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$ Input size: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$

B

Solvable by NTM in $\mathrm{O}\left(n^{r}\right)$

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.

Input size: \boldsymbol{n} Time required: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$ Input size: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$

Time required: $\mathbf{O}\left(n^{k r}\right)$

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.

Input size: \boldsymbol{n}

Time required: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$ Input size: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$

B

$$
f(w) \in B \text { iff } w \in A
$$

Time required: $\mathbf{O}\left(n^{k r}\right)$

Polynomial-Time Reductions

- Suppose that we know that $B \in \mathbf{N P}$.
- Suppose that $A \leq_{\mathrm{p}} B$ and that the reduction f can be computed in time $\mathrm{O}\left(n^{k}\right)$.
- Then $A \in \mathbf{N P}$ as well.

Input size: \boldsymbol{n}

Time required: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$ Input size: $\mathbf{O}\left(\boldsymbol{n}^{\boldsymbol{k}}\right)$

B

$$
f(w) \in B \text { iff } w \in A
$$

Solvable by NTM in O($\left.n^{r}\right)$

Time required: $\mathbf{O}\left(n^{k r}\right)$

A Sample Reduction

$$
\begin{gathered}
U=\{1,2,3,4,5,6\} \\
S=\left\{\begin{array}{c}
\{1,2,5\},\{2,5\},\{1,3,6\}, \\
\{2,3,4\},\{4\},\{1,5,6\}
\end{array}\right\}
\end{gathered}
$$

Let U be a set of elements (the universe)

 and $S \subseteq \wp(U)$. An exact covering of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.$$
\begin{gathered}
\mathbf{U}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\} \\
\mathbf{S}=\left\{\begin{array}{c}
\{1,2,5\},\{2,5\},\{1,3,6\}, \\
\{\mathbf{2}, \mathbf{3}, \mathbf{4}\},\{4\},\{\mathbf{1}, \mathbf{5}, \mathbf{6}\}
\end{array}\right\}
\end{gathered}
$$

Let U be a set of elements (the universe) and $S \subseteq \wp(U)$. An exact covering of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.

$$
\begin{gathered}
\mathbf{U}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\} \\
\mathbf{S}=\left\{\begin{array}{c}
\{1,2,5\},\{\mathbf{2}, \mathbf{5}\},\{\mathbf{1}, \mathbf{3}, \mathbf{6}\}, \\
\{2,3,4\},\{\mathbf{4}\},\{1,5,6\}
\end{array}\right\}
\end{gathered}
$$

Let U be a set of elements (the universe) and $S \subseteq \wp(U)$. An exact covering of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.

$$
\begin{gathered}
\mathbf{U}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\} \\
\mathbf{S}=\left\{\begin{array}{l}
\{1,2,5\},\{2,5\},\{1,3,6\}, \\
\{2,3,4\},\{4\},\{1,5,6\}
\end{array}\right\}
\end{gathered}
$$

Let U be a set of elements (the universe) and $S \subseteq \wp(U)$. An exact covering of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.

$$
\begin{gathered}
U=\{1,2,3,4,5,6\} \\
S=\left\{\begin{array}{l}
\{1,2,5\},\{2,5\},\{1,3,6\}, \\
\{2,3,4\}\{4\},\{1,5,6\}
\end{array}\right\}
\end{gathered}
$$

Let U be a set of elements (the universe) and $S \subseteq \wp(U)$. An exact covering of U is a collection of sets $I \subseteq S$ such that every element of U belongs to exactly one set in I.

Exact Covering

- Given a universe U and a set $S \subseteq \wp(U)$, the exact covering problem is

Does S contain an exact covering of \boldsymbol{U} ?

- As a formal language: EXACT-COVER =
$\{\langle U, S\rangle \mid S \subseteq \wp(U)$ and
S contains an exact covering of $\boldsymbol{U}\}$

EXACT-COVER $\in \mathbf{N P}$

- Here is a polynomial-time verifier for EXACT-COVER:
- $V=$ "On input $\langle U, S, I\rangle$, where U, S, and I are sets:
- Verify that every set in S is a subset of U.
- Verify that every set in I is an element of S.
- Verify that every element of U belongs to an element of I.
- Verify that every element of U belongs to at most one element of $I . "$

Applications of Exact Covering

1	2	3
4	5	6
7	8	9

Applications of Exact Covering

Applications of Exact Covering

1	2	3
4	5	6
7	8	9

Applications of Exact Covering

Applications of Exact Covering

Applications of Exact Covering

1	2	3
4	5	6
7	8	9

Applications of Exact Covering

Applications of Exact Covering

$$
\{\mathrm{C}, 1,4,5\}
$$

Applications of Exact Covering

$$
\{\mathrm{C}, 1,4,5\}
$$

Applications of Exact Covering

$$
\begin{aligned}
& \{C, 1,4,5\} \\
& \{C, 1,2,4\}
\end{aligned}
$$

Applications of Exact Covering

$$
\begin{aligned}
& \{C, 1,4,5\} \\
& \{C, 1,2,4\}
\end{aligned}
$$

Applications of Exact Covering

$$
\begin{aligned}
& \{C, 1,4,5\} \\
& \{C, 1,2,4\} \\
& \{C, 1,2,5\}
\end{aligned}
$$

Applications of Exact Covering

$$
\begin{aligned}
& \{C, 1,4,5\} \\
& \{C, 1,2,4\} \\
& \{C, 1,2,5\}
\end{aligned}
$$

Applications of Exact Covering

$$
\begin{aligned}
& \{C, 1,4,5\} \\
& \{C, 1,2,4\} \\
& \{C, 1,2,5\} \\
& \{C, 2,4,5\}
\end{aligned}
$$

Applications of Exact Covering

$$
\begin{gathered}
\{C, 1,4,5\} \\
\{C, 1,2,4\} \\
\{C, 1,2,5\} \\
\{C, 2,4,5\} \\
\ldots
\end{gathered}
$$

Applications of Exact Covering

1	2	3
4	5	6
7	8	9

$$
\begin{gathered}
\{C, 1,4,5\} \\
\{C, 1,2,4\} \\
\{C, 1,2,5\} \\
\{C, 2,4,5\} \\
\ldots
\end{gathered}
$$

Applications of Exact Covering

	2	3
	5	6
	8	9

$$
\begin{aligned}
& \{C, 1,4,5\} \\
& \{C, 1,2,4\} \\
& \{C, 1,2,5\} \\
& \{C, 2,4,5\}
\end{aligned}
$$

Applications of Exact Covering

	2	3
	5	6
	8	9

$$
\begin{aligned}
& \{C, 1,4,5\} \\
& \{C, 1,2,4\} \\
& \{C, 1,2,5\} \\
& \{C, 2,4,5\} \\
& \left\{\begin{array}{c}
\{
\end{array}\right\} \\
& \{M, 1,4,7\}
\end{aligned}
$$

Applications of Exact Covering

1		3
4		6
7		9

$$
\begin{gathered}
\{C, 1,4,5\} \\
\{C, 1,2,4\} \\
\{C, 1,2,5\} \\
\{C, 2,4,5\} \\
\left\{\begin{array}{c}
\{
\end{array}\right. \\
\{M, 1,4,7\}
\end{gathered}
$$

Applications of Exact Covering

1		3
4		6
7		9

$$
\begin{array}{r}
\{\mathrm{C}, 1,4,5\} \\
\{\mathrm{C}, 1,2,4\} \\
\{\mathrm{C}, 1,2,5\} \\
\{\mathrm{C}, 2,4,5\} \\
\ldots \\
\{\mathrm{M}, 1,4,7\} \\
\{\mathrm{M}, 2,5,8\}
\end{array}
$$

Applications of Exact Covering

1	2	
4	5	
7	8	

$$
\begin{array}{r}
\{\mathrm{C}, 1,4,5\} \\
\{\mathrm{C}, 1,2,4\} \\
\{\mathrm{C}, 1,2,5\} \\
\{\mathrm{C}, 2,4,5\} \\
\ldots \\
\{\mathrm{M}, 1,4,7\} \\
\{\mathrm{M}, 2,5,8\}
\end{array}
$$

Applications of Exact Covering

1	2	
4	5	
7	8	

$$
\begin{aligned}
& \{\mathrm{C}, 1,4,5\} \\
& \{\mathrm{C}, 1,2,4\} \\
& \{\mathrm{C}, 1,2,5\} \\
& \{\mathrm{C}, 2,4,5\} \\
& \begin{array}{l}
\ldots \\
\{\mathrm{M}, 1,4,7\} \\
\{\mathrm{M}, 2,5,8\} \\
\{\mathrm{M}, 3,6,9\}
\end{array}
\end{aligned}
$$

Applications of Exact Covering

1	2	3
4	5	6
7	8	9

$$
\begin{aligned}
& \{C, 1,4,5\} \\
& \{C, 1,2,4\} \\
& \{C, 1,2,5\} \\
& \{C, 2,4,5\} \\
& \begin{array}{c}
\{.,
\end{array} \\
& \begin{array}{l}
\{M, 1,4,7\} \\
\{M, 2,5,8\} \\
\{M, 3,6,9\}
\end{array}
\end{aligned}
$$

Trust me, these reductions matter.

We'll see why in a few minutes.

The

Most Important Question
in
Theoretical Computer Science

What is the connection between \mathbf{P} and $\mathbf{N P}$?

$\mathbf{P}=\{L \mid$ There is a polynomial-time decider for L \}

$\mathbf{N P}=\left\{L \left\lvert\, \begin{array}{l}\text { There is a nondeterministic } \\ \text { polynomial-time decider for } L\}\end{array}\right.\right.$
$\mathbf{P} \subseteq \mathbf{N P}$

Which Picture is Correct?

Which Picture is Correct?

P
NP

Does $\mathbf{P}=\mathbf{N P}$?

$\mathbf{P} \xlongequal{=} \mathbf{N} \mathbf{P}$

- The $\mathbf{P} \stackrel{2}{=} \mathbf{N P}$ question is the most important question in theoretical computer science.
- With the verifier definition of NP, one way of phrasing this question is

If a solution to a problem can be verified efficiently, can that problem be solved efficiently?

- An answer either way will give fundamental insights into the nature of computation.

Why This Matters

- The following problems are known to be efficiently verifiable, but have no known efficient solutions:
- Determining whether an electrical grid can be built to link up some number of houses for some price (Steiner tree problem).
- Determining whether a simple DNA strand exists that multiple gene sequences could be a part of (shortest common supersequence).
- Determining the best way to assign hardware resources in a compiler (optimal register allocation).
- Determining the best way to distribute tasks to multiple workers to minimize completion time (job scheduling).
- And many more.
- If $\mathbf{P}=\mathbf{N P}$, all of these problems have efficient solutions.
- If $\mathbf{P} \neq \mathbf{N P}$, none of these problems have efficient solutions.

Why This Matters

- If $\mathbf{P}=\mathbf{N P}$:
- A huge number of seemingly difficult problems could be solved efficiently.
- Our capacity to solve many problems will scale well with the size of the problems we want to solve.
- If $\mathbf{P} \neq \mathbf{N P}$:
- Enormous computational power would be required to solve many seemingly easy tasks.
- Our capacity to solve problems will fail to keep up with our curiosity.

What We Know

- Resolving $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$ has proven extremely difficult.
- In the past 35 years:
- Not a single correct proof either way has been found.
- Many types of proofs have been shown to be insufficiently powerful to determine whether $\mathbf{P}=\mathbf{N P}$.
- A majority of computer scientists believe $\mathbf{P} \neq \mathbf{N P}$, but this isn't a large majority.
- Interesting read: Interviews with leading thinkers about $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$:
- http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

The Clay Mathematics Institute has offered a $\$ \mathbf{1 , 0 0 0 , 0 0 0}$ prize to anyone who proves or disproves $\mathbf{P}=\mathbf{N P}$.

The Million-Dollar Question ChALLENGE ACCEPTED

The Clay Mathematics Institute has offered a $\mathbf{\$ 1 , 0 0 0 , 0 0 0}$ prize to anyone who proves or disproves $\mathbf{P}=\mathbf{N P}$.

Time-Out For Announcements

Please evaluate this course in Axess.

Your feedback really does make a difference.

Final Exam Logistics

- Final exam is this upcoming Monday, December $9^{\text {th }}$ from 12:15PM - 3:15PM.
- Room information TBA; we're still finalizing everything.
- Exam is cumulative, but focuses primarily on material from DFAs onward.
- Take a look a the practice exams for a sense of what the coverage will be like.

Practice Finals

- We have three practice exams available right now:
- An extra credit practice exam worth +5 EC points.
- Two actual final exams from previous quarters, which are good for studying but not worth any extra credit.
- Solutions to the two additional practice finals will be released Wednesday.
- Please take the additional final exams under realistic conditions so that you can get a sense of where you stand. Most of the problems are "nondeterministically trivial."

A Note on Honesty and Integrity

Review Sessions

- We will be holding at least one final exam review session later this week.
- We will announce date and time information once it's finalized.
- Feel free to show up with any questions you'd like answered!

Casual CS Dinner

- The second biquarterly Casual CS Dinner for Women in CS is tonight at 6PM on the fifth floor of Gates.
- Everyone is welcome!
- RSVP appreciated; check the email sent to the CS103 list.

Back to CS103!

NP-Completeness

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{P}} L$.

NP

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.

NP
NP-Hard

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.

NP
NP-Hard

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{P}} L$.

Intuitively: L has to be at least as hard as every problem in NP, since an algorithm for L can be used to decide all problems in NP.

NP

NP-Hard

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.

NP
NP-Hard

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.

NP What's in here?

NP-Hard

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.
- A language in L is called NP-complete iff L is NP-hard and $L \in \mathbf{N P}$.
- The class NPC is the set of NP-complete problems.

NP

NP-Hard

NP-Hardness

- A language L is called NP-hard iff for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.
- A language in L is called NP-complete iff L is NP-hard and $L \in \mathbf{N P}$.
- The class NPC is the set of NP-complete problems.

The Tantalizing Truth

Theorem: If any $\mathbf{N P}$-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{P}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P} . \square$

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{p}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N} \mathbf{P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$ and $L \in \mathbf{P}$, we know for any $L^{\prime} \in \mathbf{N P}$ that $L^{\prime} \leq_{\mathrm{p}} L$, because L is NP-complete. Since $L^{\prime} \leq_{\mathrm{P}} L$ and $L \in \mathbf{P}$, this means that $L^{\prime} \in \mathbf{P}$ as well. Since our choice of L^{\prime} was arbitrary, any language $L^{\prime} \in \mathbf{N P}$ satisfies $L^{\prime} \in \mathbf{P}$, so $\mathbf{N P} \subseteq \mathbf{P}$. Since $\mathbf{P} \subseteq \mathbf{N P}$, this means $\mathbf{P}=\mathbf{N P} . \square$

The Tantalizing Truth

Theorem: If any NP-complete language is not in \mathbf{P}, then $\mathbf{P} \neq \mathbf{N P}$.
Proof: If $L \in \mathbf{N P C}$, then $L \in \mathbf{N P}$. Thus if $L \notin \mathbf{P}$, then $L \in \mathbf{N P}-\mathbf{P}$. This means that $\mathbf{N P}-\mathbf{P} \neq \varnothing$, so $\mathbf{P} \neq \mathbf{N P}$.

A Feel for NP-Completeness

- If a problem is NP-complete, then under the assumption that $\mathbf{P} \neq \mathbf{N P}$, there cannot be an efficient algorithm for it.
- In a sense, NP-complete problems are the hardest problems in NP.
- All known NP-complete problems are enormously hard to solve:
- All known algorithms for NP-complete problems run in worst-case exponential time.
- Most algorithms for NP-complete problems are infeasible for reasonably-sized inputs.

How do we even know NP-complete problems exist in the first place?

Satisfiability

- A propositional logic formula φ is called satisfiable if there is some assignment to its variables that makes it evaluate to true.
- $p \wedge q$ is satisfiable.
- $p \wedge \neg p$ is unsatisfiable.
- $p \rightarrow(q \wedge \neg q)$ is satisfiable.
- An assignment of true and false to the variables of φ that makes it evaluate to true is called a satisfying assignment.

SAT

- The boolean satisfiability problem (SAT) is the following:

Given a propositional logic formula φ, is φ satisfiable?

- Formally:

$$
\begin{aligned}
& \text { SAT }=\{\langle\varphi\rangle \mid \underset{\text { formula }}{ }\}
\end{aligned}
$$

Theorem (Cook-Levin): SAT is NP-complete.

A Simpler NP-Complete Problem

Literals and Clauses

- A literal in propositional logic is a variable or its negation:
- X
- $\neg y$
- But not $x \wedge y$.
- A clause is a many-way OR (disjunction) of literals.
- $\neg x \vee y \vee \neg z$
- X
- But not $x \vee \neg(y \vee z)$

Conjunctive Normal Form

- A propositional logic formula φ is in conjunctive normal form (CNF) if it is the many-way AND (conjunction) of clauses.
- ($x \vee y \vee z) \wedge(\neg x \vee \neg y) \wedge(x \vee y \vee z \vee \neg w)$
- $x \vee z$
- But not $(x \vee(y \wedge z)) \vee(x \vee y)$
- Only legal operators are \neg, v, \wedge.
- No nesting allowed.

The Structure of CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Each clause must have at least one
true literal in it.

The Structure of CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

We should pick at least one true literal from each clause

The Structure of CNF

$(\underbrace{x \vee y \vee \neg z}) \wedge(\underbrace{\neg x \vee \neg y \vee z}) \wedge(\underbrace{\neg x \vee y \vee \neg z})$
... subject to the constraint
that we never choose a literal and its negation

3-CNF

- A propositional formula is in 3-CNF if
- It is in CNF, and
- Every clause has exactly three literals.
- For example:
- ($x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z)$
- ($x \vee x \vee x) \wedge(y \vee \neg y \vee \neg x) \wedge(x \vee y \vee \neg y)$
- But not ($x \vee y \vee z \vee w) \wedge(x \vee y)$
- The language 3SAT is defined as follows:

3SAT $=\{\langle\varphi\rangle \mid \varphi$ is a satisfiable 3-CNF formula \}

Theorem: 3SAT is NP-Complete

Using the Cook-Levin Theorem

- When discussing decidability, we used the fact that $\mathrm{A}_{\mathrm{TM}} \notin \mathbf{R}$ as a starting point for finding other undecidable languages.
- Idea: Reduce A_{TM} to some other language.
- When discussing NP-completeness, we will use the fact that 3SAT \in NPC as a starting point for finding other NPC languages.
- Idea: Reduce 3SAT to some other language.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

P

NP

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If
$L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP
P

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If
$L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{p}} L_{2}$, then $L_{2} \in$ NPC.

NP

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{p}} L_{2}$, then $L_{2} \in$ NPC.

NP

NPC

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{p}} L_{2}$, then $L_{2} \in$ NPC.

NP

P

Next Time

- More NP-Complete Problems
- Independent Sets
- Graph Coloring
- Applied Complexity Theory (ITA)
- Why does all of this matter?

