

NP-Completeness

Recap from Last Time

Analyzing NTMs

● When discussing deterministic TMs, the notion of time
complexity is (reasonably) straightforward.

● Recall: One way of thinking about nondeterminism is
as a tree.

● The time complexity is the height of the
tree (the length of the longest possible
choice we could make).

● Intuition: If you ran all possible
branches in parallel, how long would
it take before all branches completed?

The Complexity Class NP

● The complexity class NP
(nondeterministic polynomial time)
contains all problems that can be solved
in polynomial time by an NTM.

● Formally:

NP = { L | There is a nondeterministic
 TM that decides L in

 polynomial time. }

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V
with the following properties:

● w ∈ L iff there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Some terminology:

● A TM V with the above property is called a
polynomial-time verifier for L.

● The string c is called a certificate for w.
● You can think of V as checking the certificate

that proves w ∈ L.

NP and Reductions

Polynomial-Time Reductions

A

Solvable?

B

Solvable by
NTM in O(nr)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Polynomial-Time Reductions

A

Solvable?

B

Solvable by
NTM in O(nr)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable by
NTM in O(nr)

Compute f(w)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable by
NTM in O(nr)

Compute f(w)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk)Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable by
NTM in O(nr)

Compute f(w)

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk) Input size: O(nk)Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable by
NTM in O(nr)

Compute f(w)

f(w) ∈ B iff w ∈ A

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk)Input size: n Input size: O(nk)

Polynomial-Time Reductions

A

Solvable?

B

Solvable by
NTM in O(nr)

Compute f(w)

f(w) ∈ B iff w ∈ A

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk)

Time required: O(nkr)

Input size: n Input size: O(nk)

Polynomial-Time Reductions

A

Solvable by
NTM in O(nkr)

B

Solvable by
NTM in O(nr)

Compute f(w)

f(w) ∈ B iff w ∈ A

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk)Input size: n Input size: O(nk)

Time required: O(nkr)

Polynomial-Time Reductions

A

Solvable by
NTM in O(nkr)

B

Solvable by
NTM in O(nr)

Compute f(w)

f(w) ∈ B iff w ∈ A

● Suppose that we know that B ∈ NP.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

● Then A ∈ NP as well.

Time required: O(nk)

Time required: O(nkr)

Input size: n Input size: O(nk)

A Sample Reduction

Let U be a set of elements (the universe)
and S ⊆ (℘ U). An exact covering of U is a

collection of sets I ⊆ S such that every
element of U belongs to exactly one set in I.

1, 2, 3, 4, 5, 6U =

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,

S =

Let U be a set of elements (the universe)
and S ⊆ (℘ U). An exact covering of U is a

collection of sets I ⊆ S such that every
element of U belongs to exactly one set in I.

1, 2, 3, 4, 5, 6U =

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,

S =

Let U be a set of elements (the universe)
and S ⊆ (℘ U). An exact covering of U is a

collection of sets I ⊆ S such that every
element of U belongs to exactly one set in I.

1, 2, 3, 4, 5, 6U =

1, 2, 5

2, 3, 4

2, 5

4 1, 5, 6

1, 3, 6, ,

, ,

,

S =

Let U be a set of elements (the universe)
and S ⊆ (℘ U). An exact covering of U is a

collection of sets I ⊆ S such that every
element of U belongs to exactly one set in I.

1, 2, 3, 4, 5, 6U =

1, 2, 5 ,

S =
2, 5

4

,

,2, 3, 4

1, 3, 6 ,

1, 5, 6

Let U be a set of elements (the universe)
and S ⊆ (℘ U). An exact covering of U is a

collection of sets I ⊆ S such that every
element of U belongs to exactly one set in I.

1, 2, 3, 4, 5, 6U =

1, 2, 5 ,

S =
2, 5

4

,

,2, 3, 4

1, 3, 6 ,

1, 5, 6

Exact Covering

● Given a universe U and a set S ⊆ (℘ U), the
exact covering problem is

Does S contain an
exact covering of U?

● As a formal language:

EXACT-COVER =
 { ⟨U, S⟩ | S ⊆ (℘ U) and
 S contains an exact
 covering of U }

EXACT-COVER ∈ NP

● Here is a polynomial-time verifier for
EXACT-COVER:

● V = “On input ⟨U, S, I⟩, where U, S, and
 I are sets:
● Verify that every set in S is a subset of U.
● Verify that every set in I is an element of S.
● Verify that every element of U belongs to an element

of I.
● Verify that every element of U belongs to at most one

element of I.”

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

Applications of Exact Covering

C Y M

1 2

3 4 5 6 7

8 9

Applications of Exact Covering

1 2

5 6

8

9

C Y M

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…
{ M, 1, 4, 7 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…
{ M, 1, 4, 7 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…
{ M, 1, 4, 7 }
{ M, 2, 5, 8 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…
{ M, 1, 4, 7 }
{ M, 2, 5, 8 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…
{ M, 1, 4, 7 }
{ M, 2, 5, 8 }
{ M, 3, 6, 9 }

Applications of Exact Covering

1 2 3

4 5 6

7 8 9

C Y M

{ C, 1, 4, 5 }
{ C, 1, 2, 4 }
{ C, 1, 2, 5 }
{ C, 2, 4, 5 }

…
{ M, 1, 4, 7 }
{ M, 2, 5, 8 }
{ M, 3, 6, 9 }

…

Trust me, these reductions matter.

We'll see why in a few minutes.

The

Most Important Question

in

Theoretical Computer Science

What is the connection between P and NP?

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a nondeterministic
 polynomial-time decider for L }

P ⊆ NP

P NP

Which Picture is Correct?

P NP

Which Picture is Correct?

Does P = NP?

P ≟ NP

● The P ≟ NP question is the most important question in
theoretical computer science.

● With the verifier definition of NP, one way of phrasing
this question is

If a solution to a problem can be verified efficiently,
can that problem be solved efficiently?

● An answer either way will give fundamental insights
into the nature of computation.

Why This Matters

● The following problems are known to be efficiently
verifiable, but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems

could be solved efficiently.
● Our capacity to solve many problems will scale

well with the size of the problems we want to
solve.

● If P ≠ NP:
● Enormous computational power would be

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up

with our curiosity.

What We Know

● Resolving P ≟ NP has proven extremely difficult.

● In the past 35 years:
● Not a single correct proof either way has been

found.
● Many types of proofs have been shown to be

insufficiently powerful to determine whether
P = NP.

● A majority of computer scientists believe P ≠ NP,
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers
about P ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

The Clay Mathematics Institute has
offered a $1,000,000 prize to anyone who

proves or disproves P = NP.

The Million-Dollar Question

The Clay Mathematics Institute has
offered a $1,000,000 prize to anyone who

proves or disproves P = NP.

Time-Out For Announcements

Please evaluate this course in Axess.

Your feedback really does make a
difference.

Final Exam Logistics

● Final exam is this upcoming Monday,
December 9th from 12:15PM – 3:15PM.

● Room information TBA; we're still
finalizing everything.

● Exam is cumulative, but focuses
primarily on material from DFAs onward.
● Take a look a the practice exams for a sense

of what the coverage will be like.

Practice Finals

● We have three practice exams available right now:
● An extra credit practice exam worth +5 EC points.
● Two actual final exams from previous quarters,

which are good for studying but not worth any extra
credit.

● Solutions to the two additional practice finals will
be released Wednesday.

● Please take the additional final exams under
realistic conditions so that you can get a sense
of where you stand. Most of the problems are
“nondeterministically trivial.”

A Note on Honesty and Integrity

Review Sessions

● We will be holding at least one final exam
review session later this week.

● We will announce date and time
information once it's finalized.

● Feel free to show up with any questions
you'd like answered!

Casual CS Dinner

● The second biquarterly Casual CS Dinner
for Women in CS is tonight at 6PM on
the fifth floor of Gates.

● Everyone is welcome!
● RSVP appreciated; check the email sent

to the CS103 list.

Back to CS103!

NP-Completeness

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

 NPP

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

 NPP

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

 NPP

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

Intuitively: L has to be at least as
hard as every problem in NP, since
an algorithm for L can be used to

decide all problems in NP.

Intuitively: L has to be at least as
hard as every problem in NP, since
an algorithm for L can be used to

decide all problems in NP.

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

What's in here?What's in here?

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard iff for every L' ∈ NP, we
have L' ≤P L.

● A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard
NPC

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

 NP
P

NPC
P

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

 NP
P

NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: If L ∈ NPC and L ∈ P, we know for any L' ∈ NP that
 L' ≤P L, because L is NP-complete. Since L' ≤P L and
 L ∈ P, this means that L' ∈ P as well. Since our choice of
 L' was arbitrary, any language L' ∈ NP satisfies L' ∈ P, so
 NP ⊆ P. Since P ⊆ NP, this means P = NP. ■

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: If L ∈ NPC, then L ∈ NP. Thus if L ∉ P, then L ∈ NP – P.
 This means that NP – P ≠ Ø, so P ≠ NP. ■

A Feel for NP-Completeness

● If a problem is NP-complete, then under the
assumption that P ≠ NP, there cannot be an
efficient algorithm for it.

● In a sense, NP-complete problems are the
hardest problems in NP.

● All known NP-complete problems are
enormously hard to solve:
● All known algorithms for NP-complete problems

run in worst-case exponential time.
● Most algorithms for NP-complete problems are

infeasible for reasonably-sized inputs.

How do we even know NP-complete
problems exist in the first place?

Satisfiability

● A propositional logic formula φ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the
variables of φ that makes it evaluate to
true is called a satisfying assignment.

SAT

● The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL
formula }

Theorem (Cook-Levin): SAT is NP-complete.

A Simpler NP-Complete Problem

Literals and Clauses
● A literal in propositional logic is a

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction)
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)

Conjunctive Normal Form

● A propositional logic formula φ is in
conjunctive normal form (CNF) if it is
the many-way AND (conjunction) of
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

Each clause must have
at least one

true literal in it.

Each clause must have
at least one

true literal in it.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

We should pick at least
one true literal from

each clause

We should pick at least
one true literal from

each clause

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

… subject to the constraint
that we never choose a literal

and its negation

… subject to the constraint
that we never choose a literal

and its negation

3-CNF

● A propositional formula is in 3-CNF if
● It is in CNF, and
● Every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● But not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF
formula }

Theorem: 3SAT is NP-Complete

Using the Cook-Levin Theorem

● When discussing decidability, we used
the fact that ATM ∉ R as a starting point
for finding other undecidable languages.
● Idea: Reduce ATM to some other language.

● When discussing NP-completeness, we
will use the fact that 3SAT ∈ NPC as a
starting point for finding other NPC
languages.
● Idea: Reduce 3SAT to some other language.

NP-Completeness
Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

NP-Completeness

P

 NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

NP-Completeness

P

 NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

NP-Completeness

P

 NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

NP-Completeness

P

 NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

NP-Completeness

P

 NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

NP-Completeness

P

 NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

Next Time

● More NP-Complete Problems
● Independent Sets
● Graph Coloring

● Applied Complexity Theory (ITA)
● Why does all of this matter?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

