
  

Complexity Theory
Part II



  

Time Complexity

● The time complexity of a TM M is a function 
denoting the worst-case number of steps M takes 
on any input of length n.

● By convention, n denotes the length of the input.
● Assume we're only dealing with deciders, so there's 

no need to handle looping TMs.
● We often use big-O notation to describe growth rates 

of functions (and time complexity in particular).

● Found by discarding leading coefficients and 
low-order terms.



  

Polynomials and Exponentials

● A TM runs in polynomial time iff its 
runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently iff
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P iff it can be decided 
efficiently.



  Undecidable Languages

Regular
Languages CFLs RP



  

Problems in P

● Graph connectivity:

Given a graph G and nodes s and t,     
is there a path from s to t?      

● Primality testing:

Given a number p, is p prime?  (Best known 
TM for this takes time O(n72).)

● Maximum matching:

Given a set of tasks and workers who can 
perform those tasks, can all of the tasks be 

completed in under n hours?    



  

Problems in P

● Remoteness testing:

Given a graph G, are all of the nodes in G
within distance at most k of one another?

● Linear programming:

Given a linear set of constraints
and linear objective function, is the

optimal solution at least n?  

● Edit distance:

Given two strings, can the strings be 
transformed into one another in at most n 

single-character edits? 



  

Other Models of Computation

● Theorem: L ∈ P iff there is a 
polynomial-time TM or computer 
program that decides it.

● Essentially – a problem is in P iff you 
could solve it on a normal computer in 
polynomial time.

● Proof involves simulating a computer 
with a TM; come talk to me after lecture 
for details on how to do this.



  

Proving Languages are in P

● Directly prove the language is in P.
● Build a decider for the language L.
● Prove that the decider runs in time O(nk).

● Use closure properties.
● Prove that the language can be formed by 

appropriate transformations of languages in P.

● Reduce the language to a language in P.
● Show how a polynomial-time decider for some 

language L' can be used to decide L.



  

Reductions

Problem A Problem B

Can be converted to

Can be used to solve

If any instance of A can be 
converted into an instance of B, 

we say that A reduces to B.



  

Mapping Reductions and P

● When studying whether problems were in R, 
RE, or co-RE, we used mapping reductions.

● The construction we built using mapping 
reductions
● computes the function f on some input string w, 

then
● runs another TM on f(w).

● When talking about class P, we need to make 
sure that this entire process doesn't take too 
much time.



  

Polynomial-Time Reductions

● Let A ⊆ Σ1* and B ⊆ Σ2* be languages.

● A polynomial-time mapping reduction is a function
f : Σ1* → Σ2* with the following properties:

● f(w) can be computed in polynomial time.
● w ∈ A iff f(w) ∈ B.

● Informally:
● A way of turning inputs to A into inputs to B
● that can be computed in polynomial time
● that preserves the correct answer.

● Notation: A ≤P B iff there is a polynomial-time 
mapping reduction from A to B.



  

Polynomial-Time Reductions

A

Solvable?
 

B

Solvable 
in O(nr)

Compute f(w)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f 
can be computed in time O(nk).

Time required: O(nk) Input size: ?

Key observation: If it takes 
time O(nk) to compute f(w), 
then the maximum possible 

length of f(w) is O(nk).

Key observation: If it takes 
time O(nk) to compute f(w), 
then the maximum possible 

length of f(w) is O(nk).

Input size: n



  

Polynomial-Time Reductions

A

Solvable in
 O(nkr)

B

Solvable 
in O(nr)

Compute f(w)

f(w) ∈ B  iff  w ∈ A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f 
can be computed in time O(nk).

● Then A ∈ P as well.

Time required: O(nk)

Time required: O(nkr)

Input size: n Input size: O(nk)



  

Theorem: If B ∈ P and A ≤P B, then A ∈ P.
 

Proof: Let H be a polynomial-time decider for B.  Consider the
following TM:

 

M = “On input w:
Compute f(w).
Run H on f(w).
If H accepts, accept; if H rejects, reject.”

 

We claim that M is a polynomial-time decider for A. To see this,
we prove that M is a polynomial-time decider, then that
ℒ(M) = A. To see that M is a polynomial-time decider, note that
because f is a polynomial-time reduction, computing f(w) takes
time O(nk) for some k. Moreover, because computing f(w) takes
time O(nk), we know that |f(w)| = O(nk). M then runs H on f(w).
Since H is a polynomial-time decider, H halts in O(mr) on an
input of size m for some r. Since |f(w)| = O(nk), H halts after
O(|f(w)|r) = O(nkr) steps. Thus M halts after O(nk + nkr) steps, so
M is a polynomial-time decider.

 

To see that (ℒ M) = A, note that M accepts w iff H accepts f(w)
iff f(w) ∈ B. Since f is a polynomial-time reduction, f(w) ∈ B iff 
w ∈ A.  Thus M accepts w iff w ∈ A, so (ℒ M) = A. ■



  

A Sample Reduction



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.

A maximum 
matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

Maximum matchings 
are not necessarily 

unique.

Maximum matchings 
are not necessarily 

unique.



  

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time 
algorithm for finding maximum 
matchings.
● (This is the same Edmonds as in 

“Cobham-Edmonds Thesis.)

● Using this fact, what other problems can 
we solve?



  

Domino Tiling



  

A Domino Tiling Reduction

● Let MATCHING be the language defined as 
follows:

MATCHING = { ⟨G, k⟩ | G is an undirected graph 
with a matching of size at least k }

● Theorem (Edmonds): MATCHING ∈ P.
● Let DOMINO be this language:

DOMINO = { ⟨D, k⟩ | D is a grid and k 
nonoverlapping dominoes can be placed on D. }

● We'll prove DOMINO ≤P MATCHING to show 
that DOMINO ∈ P.



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Our Reduction

● Given as input ⟨D, k⟩, construct the graph G as 
follows:
● For each empty cell, construct a node.
● For each pair of adjacent empty cells, construct 

an edge between them.

● Let f(⟨D, k⟩) = ⟨G, k⟩.



  

Lemma: f is computable in polynomial time.

Proof: We show that f(⟨D, k⟩) = ⟨G, k⟩ has size that is a
polynomial in the size of ⟨D, k⟩.

 

For each empty cell xi in D, we construct a single node
vi in G.  Since there are O(|D|) cells, there are O(|D|)
nodes in the graph.  For each pair of adjacent, empty
cells xi and xj in D, we add the edge (xi, xj).  Since each
cell in D has four neighbors, the maximum number of
edges we could add this way is O(|D|) as well.  Thus
the total size of the graph G is O(|D|).  Consequently,
the total size of ⟨G, k⟩ is O(|D| + |k|), which is a
polynomial in the size of the input.

Since each part of the graph could be constructed in
polynomial time, the overall graph can be constructed
in polynomial time. ■



  

What can't you do in polynomial time?



  

start

end

How many simple 
paths are there 
from the start 
node to the end 

node?

How many simple 
paths are there 
from the start 
node to the end 

node?



  

, , ,

How many 
subsets of this 
set are there?

How many 
subsets of this 
set are there?



  

An Interesting Observation

● There are (at least) exponentially many 
objects of each of the preceding types.

● However, each of those objects is not very 
large.
● Each simple path has length no longer than the 

number of nodes in the graph.
● Each subset of a set has no more elements than 

the original set.

● This brings us to our next topic...



  

NPN P



  

What if you could magically
guess which element of the
search space was the one

you wanted?



  

A Sample Problem
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M = “On input ⟨S, k⟩, where S is a sequence
of numbers and k is a natural number:

 

· Nondeterministically guess a subsequence
  of S.

 

· If it is an ascending subsequence of length
  at least k, accept.

 

· Otherwise, reject.”
 

 

M = “On input ⟨S, k⟩, where S is a sequence
of numbers and k is a natural number:

 

· Nondeterministically guess a subsequence
  of S.

 

· If it is an ascending subsequence of length
  at least k, accept.

 

· Otherwise, reject.”
 



  

Another Problem

E

A

F

C

D

B

 

M = “On input ⟨G, u, v, k⟩, where G is a graph,
u and v are nodes in G, and k ∈ ℕ:

 

· Nondeterministically guess a permutation
  of at most k nodes from G.

 

· If the permutation is a path from u to v,
  accept.

 

· Otherwise, reject.
 

 

M = “On input ⟨G, u, v, k⟩, where G is a graph,
u and v are nodes in G, and k ∈ ℕ:

 

· Nondeterministically guess a permutation
  of at most k nodes from G.

 

· If the permutation is a path from u to v,
  accept.

 

· Otherwise, reject.
 



  

How do we measure NTM efficiency?



  

Analyzing NTMs

● When discussing deterministic TMs, the notion of 
time complexity is (reasonably)
straightforward.

● Recall: One way of thinking about 
nondeterminism is as a tree.

● In a deterministic computation,
the tree is a straight line.

● The time complexity is the
height of that straight line.



  

Analyzing NTMs

● When discussing deterministic TMs, the notion of time 
complexity is (reasonably) straightforward.

● Recall: One way of thinking about nondeterminism is 
as a tree.

● The time complexity is the height of the
tree (the length of the longest possible
choice we could make).

● Intuition: If you ran all possible
branches in parallel, how long would
it take before all branches completed?



  

The Size of the Tree



  

From NTMs to TMs

● Theorem: For any NTM with time 
complexity f(n), there is a TM with time 
complexity 2O(f(n)).

● It is unknown whether it is possible 
to do any better than this in the 
general case.

● NTMs are capable of exploring multiple 
options in parallel; this “seems” 
inherently faster than deterministic 
computation.



  

The Complexity Class NP

● The complexity class NP 
(nondeterministic polynomial time) 
contains all problems that can be solved 
in polynomial time by an NTM.

● Formally:

NP = { L | There is a nondeterministic
         TM that decides L in 

     polynomial time. }

What types of problems are in NP?



  

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2
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For an arbitrary n2 × n2 grid:
 

Total number of cells in the grid: n4

 

Total time to fill in the grid: O(n4)
 

Total number of rows, columns, and 
boxes to check: O(n2)
 

Total time required to check each 
row/column/box: O(n2)
 

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:
 

Total number of cells in the grid: n4

 

Total time to fill in the grid: O(n4)
 

Total number of rows, columns, and 
boxes to check: O(n2)
 

Total time required to check each 
row/column/box: O(n2)
 

Total runtime: O(n4)



  

A Problem in NP

● A graph coloring is a way of assigning colors to nodes in 
an undirected graph such that no two nodes joined by an 
edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k colors?
● M = “On input ⟨G, k⟩:

● Nondeterministically guess a k-coloring of the nodes of G.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”



  

Other Problems in NP

● Subset sum:

Given a set S of natural numbers and a target 
number n, is there a subset of S that sums to n?

● Longest path:

● Given a graph G, a pair of nodes u and v, and a 
number k, is there a simple path from u to v of 

length at least k? 

● Job scheduling:

● Given a set of jobs J, a number of workers k, and 
a time limit t, can the k workers, working in 
parallel complete all jobs in J within time t?



  

Problems and Languages
● Abstract question: does a Sudoku grid 

have a solution?
● Formalized as a language:

SUDOKU = { ⟨S⟩ | S is a solvable
                               Sudoku grid. }

● In other words:

S is solvable iff ⟨S⟩ ∈ SUDOKU  



  

Problems and Languages
● Abstract question: can a graph be 

colored with k colors?
● Formalized as a language:

COLOR = { ⟨G, k⟩ | G is an undirected
                              graph, k ∈ ℕ, and
                               G is k-colorable. }

● In other words:

G is k-colorable iff ⟨G, k⟩ ∈ COLOR  



  

A General Pattern

● The NTMs we have seen so far always follow this 
pattern:

● M = “On input w:
– Nondeterministically guess some object.
– Deterministically check whether this was the right 

guess.
– If so, accept; otherwise, reject.”

● Intuition: The NTM is searching for some proof 
that w belongs to some language L.

● If w ∈ L, it can guess the proof.
● If w ∉ L, it will never guess the proof.



  

An Intuition for NP

● Intuitively, a language L is in NP iff there 
is an easy way of proving strings in L 
actually belong to L.

● If w ∈ L, there is some information that 
can easily be used to convince someone 
that w ∈ L.



  

A Problem in NP
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4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

A Problem in NP

Is there an ascending subsequence of 
length at least 7?



  

A Problem in NP

Is there a simple path that goes 
through every node exactly once?
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Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V 
with the following properties:

● w ∈ L  iff  there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Intuition: Think about how you would convince 
someone what a string w belongs to an NP 
language L.

● If w ∈ L, there is some information you can provide 
to easily convince someone that w ∈ L.

● If w ∉ L, then no information you provide can 
convince someone that w ∈ L.



  

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V 
with the following properties:

● w ∈ L  iff  there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Some terminology:

● A TM V with the above property is called a 
polynomial-time verifier for L.

● The string c is called a certificate for w.
● You can think of V as checking the certificate 

that proves w ∈ L.



  

An Efficiently Verifiable Puzzle

Question: Can this 
lock be opened?



  

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V 
with the following properties:

● w ∈ L  iff  there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Important properties of V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V 
with the following properties:

● w ∈ L  iff  there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Important observations:

● ℒ(V) is not the language L.
● L is the set of strings in the language, while 

(ℒ V) is a set of strings in the language paired 
with certificates.

● V must be deterministic.



  

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V 
with the following properties:

● w ∈ L  iff  there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Proof sketch:

● If there is a verifier V for L, we can build a 
poly-time NTM for L by nondeterministically 
guessing a certificate c, then running V on w.

● If there is a poly-time NTM for L, we can build a 
verifier for it.  The certificate is the sequence of 
choices the NTM should make, and V checks 
that this sequence accepts.



  

A Problem in NP

● Does a Sudoku grid 
have a solution?
● M = “On input 

⟨S, A⟩, an encoding 
of a Sudoku puzzle 
and an alleged 
solution to it:
– Deterministically 

check whether A is 
a solution to S.

– If so, accept; if not, 
reject.”
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A Problem in NP

● A graph coloring is a way of assigning colors to 
nodes in an undirected graph such that no two 
nodes joined by an edge have the same color.

● Applications in compilers, cell phone towers, etc.

● Question: Can G be colored with at most k colors?

● M = “On input ⟨⟨G, k⟩, C⟩, where C is an alleged 
coloring:

● Deterministically check whether C is a legal 
k-coloring of G.

● If so, accept; if not, reject.”
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