

Complexity Theory
Part II

Time Complexity

● The time complexity of a TM M is a function
denoting the worst-case number of steps M takes
on any input of length n.

● By convention, n denotes the length of the input.
● Assume we're only dealing with deciders, so there's

no need to handle looping TMs.
● We often use big-O notation to describe growth rates

of functions (and time complexity in particular).

● Found by discarding leading coefficients and
low-order terms.

Polynomials and Exponentials

● A TM runs in polynomial time iff its
runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently iff
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P iff it can be decided
efficiently.

 Undecidable Languages

Regular
Languages CFLs RP

Problems in P

● Graph connectivity:

Given a graph G and nodes s and t,
is there a path from s to t?

● Primality testing:

Given a number p, is p prime? (Best known
TM for this takes time O(n72).)

● Maximum matching:

Given a set of tasks and workers who can
perform those tasks, can all of the tasks be

completed in under n hours?

Problems in P

● Remoteness testing:

Given a graph G, are all of the nodes in G
within distance at most k of one another?

● Linear programming:

Given a linear set of constraints
and linear objective function, is the

optimal solution at least n?

● Edit distance:

Given two strings, can the strings be
transformed into one another in at most n

single-character edits?

Other Models of Computation

● Theorem: L ∈ P iff there is a
polynomial-time TM or computer
program that decides it.

● Essentially – a problem is in P iff you
could solve it on a normal computer in
polynomial time.

● Proof involves simulating a computer
with a TM; come talk to me after lecture
for details on how to do this.

Proving Languages are in P

● Directly prove the language is in P.
● Build a decider for the language L.
● Prove that the decider runs in time O(nk).

● Use closure properties.
● Prove that the language can be formed by

appropriate transformations of languages in P.

● Reduce the language to a language in P.
● Show how a polynomial-time decider for some

language L' can be used to decide L.

Proving Languages are in P

Directly prove the language is in P.

Build a decider for the language L.

Prove that the decider runs in time O(nk).

Use closure properties.

Prove that the language can be formed by
appropriate transformations of languages in P.

● Reduce the language to a language in P.
● Show how a polynomial-time decider for some

language L' can be used to decide L.

Reductions

Problem A Problem B

Can be converted to

Can be used to solve

If any instance of A can be
converted into an instance of B,

we say that A reduces to B.

Mapping Reductions and P

● When studying whether problems were in R,
RE, or co-RE, we used mapping reductions.

● The construction we built using mapping
reductions
● computes the function f on some input string w,

then
● runs another TM on f(w).

● When talking about class P, we need to make
sure that this entire process doesn't take too
much time.

Polynomial-Time Reductions

● Let A ⊆ Σ1* and B ⊆ Σ2* be languages.

● A polynomial-time mapping reduction is a function
f : Σ1* → Σ2* with the following properties:

● f(w) can be computed in polynomial time.
● w ∈ A iff f(w) ∈ B.

● Informally:
● A way of turning inputs to A into inputs to B
● that can be computed in polynomial time
● that preserves the correct answer.

● Notation: A ≤P B iff there is a polynomial-time
mapping reduction from A to B.

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

Compute f(w)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

Compute f(w)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk)Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

Compute f(w)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk) Input size: ?Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

Compute f(w)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk) Input size: ?

Key observation: If it takes
time O(nk) to compute f(w),
then the maximum possible

length of f(w) is O(nk).

Key observation: If it takes
time O(nk) to compute f(w),
then the maximum possible

length of f(w) is O(nk).

Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

Compute f(w)

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk) Input size: O(nk)Input size: n

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

Compute f(w)

f(w) ∈ B iff w ∈ A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk)Input size: n Input size: O(nk)

Polynomial-Time Reductions

A

Solvable?

B

Solvable
in O(nr)

Compute f(w)

f(w) ∈ B iff w ∈ A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk)

Time required: O(nkr)

Input size: n Input size: O(nk)

Polynomial-Time Reductions

A

Solvable in
 O(nkr)

B

Solvable
in O(nr)

Compute f(w)

f(w) ∈ B iff w ∈ A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

Time required: O(nk)

Time required: O(nkr)

Input size: n Input size: O(nk)

Polynomial-Time Reductions

A

Solvable in
 O(nkr)

B

Solvable
in O(nr)

Compute f(w)

f(w) ∈ B iff w ∈ A

● Suppose that we know that B ∈ P.

● Suppose that A ≤P B and that the reduction f
can be computed in time O(nk).

● Then A ∈ P as well.

Time required: O(nk)

Time required: O(nkr)

Input size: n Input size: O(nk)

Theorem: If B ∈ P and A ≤P B, then A ∈ P.

Proof: Let H be a polynomial-time decider for B. Consider the
following TM:

M = “On input w:
Compute f(w).
Run H on f(w).
If H accepts, accept; if H rejects, reject.”

We claim that M is a polynomial-time decider for A. To see this,
we prove that M is a polynomial-time decider, then that
ℒ(M) = A. To see that M is a polynomial-time decider, note that
because f is a polynomial-time reduction, computing f(w) takes
time O(nk) for some k. Moreover, because computing f(w) takes
time O(nk), we know that |f(w)| = O(nk). M then runs H on f(w).
Since H is a polynomial-time decider, H halts in O(mr) on an
input of size m for some r. Since |f(w)| = O(nk), H halts after
O(|f(w)|r) = O(nkr) steps. Thus M halts after O(nk + nkr) steps, so
M is a polynomial-time decider.

To see that (ℒ M) = A, note that M accepts w iff H accepts f(w)
iff f(w) ∈ B. Since f is a polynomial-time reduction, f(w) ∈ B iff
w ∈ A. Thus M accepts w iff w ∈ A, so (ℒ M) = A. ■

A Sample Reduction

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

A matching, but
not a maximum

matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

A maximum
matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum matchings
are not necessarily

unique.

Maximum matchings
are not necessarily

unique.

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.
● (This is the same Edmonds as in

“Cobham-Edmonds Thesis.)

● Using this fact, what other problems can
we solve?

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

A Domino Tiling Reduction

● Let MATCHING be the language defined as
follows:

MATCHING = { ⟨G, k⟩ | G is an undirected graph
with a matching of size at least k }

● Theorem (Edmonds): MATCHING ∈ P.
● Let DOMINO be this language:

DOMINO = { ⟨D, k⟩ | D is a grid and k
nonoverlapping dominoes can be placed on D. }

● We'll prove DOMINO ≤P MATCHING to show
that DOMINO ∈ P.

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Our Reduction

● Given as input ⟨D, k⟩, construct the graph G as
follows:
● For each empty cell, construct a node.
● For each pair of adjacent empty cells, construct

an edge between them.

● Let f(⟨D, k⟩) = ⟨G, k⟩.

Lemma: f is computable in polynomial time.

Proof: We show that f(⟨D, k⟩) = ⟨G, k⟩ has size that is a
polynomial in the size of ⟨D, k⟩.

For each empty cell xi in D, we construct a single node
vi in G. Since there are O(|D|) cells, there are O(|D|)
nodes in the graph. For each pair of adjacent, empty
cells xi and xj in D, we add the edge (xi, xj). Since each
cell in D has four neighbors, the maximum number of
edges we could add this way is O(|D|) as well. Thus
the total size of the graph G is O(|D|). Consequently,
the total size of ⟨G, k⟩ is O(|D| + |k|), which is a
polynomial in the size of the input.

Since each part of the graph could be constructed in
polynomial time, the overall graph can be constructed
in polynomial time. ■

What can't you do in polynomial time?

start

end

How many simple
paths are there
from the start
node to the end

node?

How many simple
paths are there
from the start
node to the end

node?

, , ,

How many
subsets of this
set are there?

How many
subsets of this
set are there?

An Interesting Observation

● There are (at least) exponentially many
objects of each of the preceding types.

● However, each of those objects is not very
large.
● Each simple path has length no longer than the

number of nodes in the graph.
● Each subset of a set has no more elements than

the original set.

● This brings us to our next topic...

NPN P

What if you could magically
guess which element of the
search space was the one

you wanted?

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

M = “On input ⟨S, k⟩, where S is a sequence
of numbers and k is a natural number:

· Nondeterministically guess a subsequence
 of S.

· If it is an ascending subsequence of length
 at least k, accept.

· Otherwise, reject.”

M = “On input ⟨S, k⟩, where S is a sequence
of numbers and k is a natural number:

· Nondeterministically guess a subsequence
 of S.

· If it is an ascending subsequence of length
 at least k, accept.

· Otherwise, reject.”

Another Problem

E

A

F

C

D

B

Another Problem

E

A

F

C

D

B

M = “On input ⟨G, u, v, k⟩, where G is a graph,
u and v are nodes in G, and k ∈ ℕ:

· Nondeterministically guess a permutation
 of at most k nodes from G.

· If the permutation is a path from u to v,
 accept.

· Otherwise, reject.

M = “On input ⟨G, u, v, k⟩, where G is a graph,
u and v are nodes in G, and k ∈ ℕ:

· Nondeterministically guess a permutation
 of at most k nodes from G.

· If the permutation is a path from u to v,
 accept.

· Otherwise, reject.

How do we measure NTM efficiency?

Analyzing NTMs

● When discussing deterministic TMs, the notion of
time complexity is (reasonably)
straightforward.

● Recall: One way of thinking about
nondeterminism is as a tree.

● In a deterministic computation,
the tree is a straight line.

● The time complexity is the
height of that straight line.

Analyzing NTMs

● When discussing deterministic TMs, the notion of time
complexity is (reasonably) straightforward.

● Recall: One way of thinking about nondeterminism is
as a tree.

● The time complexity is the height of the
tree (the length of the longest possible
choice we could make).

● Intuition: If you ran all possible
branches in parallel, how long would
it take before all branches completed?

The Size of the Tree

From NTMs to TMs

● Theorem: For any NTM with time
complexity f(n), there is a TM with time
complexity 2O(f(n)).

● It is unknown whether it is possible
to do any better than this in the
general case.

● NTMs are capable of exploring multiple
options in parallel; this “seems”
inherently faster than deterministic
computation.

The Complexity Class NP

● The complexity class NP
(nondeterministic polynomial time)
contains all problems that can be solved
in polynomial time by an NTM.

● Formally:

NP = { L | There is a nondeterministic
 TM that decides L in

 polynomial time. }

What types of problems are in NP?

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.”

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP
● Does a Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP

● A graph coloring is a way of assigning colors to nodes in
an undirected graph such that no two nodes joined by an
edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k colors?
● M = “On input ⟨G, k⟩:

● Nondeterministically guess a coloring of the nodes.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”

A Problem in NP

● A graph coloring is a way of assigning colors to nodes in
an undirected graph such that no two nodes joined by an
edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k colors?
● M = “On input ⟨G, k⟩:

● Nondeterministically guess a coloring of the nodes.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”

A Problem in NP

● A graph coloring is a way of assigning colors to nodes in
an undirected graph such that no two nodes joined by an
edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Can graph G be colored with at most k colors?
● M = “On input ⟨G, k⟩:

● Nondeterministically guess a k-coloring of the nodes of G.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”

Other Problems in NP

● Subset sum:

Given a set S of natural numbers and a target
number n, is there a subset of S that sums to n?

● Longest path:

● Given a graph G, a pair of nodes u and v, and a
number k, is there a simple path from u to v of

length at least k?

● Job scheduling:

● Given a set of jobs J, a number of workers k, and
a time limit t, can the k workers, working in
parallel complete all jobs in J within time t?

Problems and Languages
● Abstract question: does a Sudoku grid

have a solution?
● Formalized as a language:

SUDOKU = { ⟨S⟩ | S is a solvable
 Sudoku grid. }

● In other words:

S is solvable iff ⟨S⟩ ∈ SUDOKU

Problems and Languages
● Abstract question: can a graph be

colored with k colors?
● Formalized as a language:

COLOR = { ⟨G, k⟩ | G is an undirected
 graph, k ∈ ℕ, and
 G is k-colorable. }

● In other words:

G is k-colorable iff ⟨G, k⟩ ∈ COLOR

A General Pattern

● The NTMs we have seen so far always follow this
pattern:

● M = “On input w:
– Nondeterministically guess some object.
– Deterministically check whether this was the right

guess.
– If so, accept; otherwise, reject.”

● Intuition: The NTM is searching for some proof
that w belongs to some language L.

● If w ∈ L, it can guess the proof.
● If w ∉ L, it will never guess the proof.

An Intuition for NP

● Intuitively, a language L is in NP iff there
is an easy way of proving strings in L
actually belong to L.

● If w ∈ L, there is some information that
can easily be used to convince someone
that w ∈ L.

A Problem in NP

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

A Problem in NP

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

A Problem in NP

Is there an ascending subsequence of
length at least 7?

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

A Problem in NP

Is there an ascending subsequence of
length at least 7?

A Problem in NP

Is there a simple path that goes
through every node exactly once?

A Problem in NP

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V
with the following properties:

● w ∈ L iff there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V
with the following properties:

● w ∈ L iff there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Intuition: Think about how you would convince
someone what a string w belongs to an NP
language L.

● If w ∈ L, there is some information you can provide
to easily convince someone that w ∈ L.

● If w ∉ L, then no information you provide can
convince someone that w ∈ L.

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V
with the following properties:

● w ∈ L iff there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Some terminology:

● A TM V with the above property is called a
polynomial-time verifier for L.

● The string c is called a certificate for w.
● You can think of V as checking the certificate

that proves w ∈ L.

An Efficiently Verifiable Puzzle

An Efficiently Verifiable Puzzle

An Efficiently Verifiable Puzzle

Question: Can this
lock be opened?

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V
with the following properties:

● w ∈ L iff there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Important properties of V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V
with the following properties:

● w ∈ L iff there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Important observations:

● ℒ(V) is not the language L.
● L is the set of strings in the language, while

(ℒ V) is a set of strings in the language paired
with certificates.

● V must be deterministic.

Another View of NP

● Theorem: L ∈ NP iff there is a deterministic TM V
with the following properties:

● w ∈ L iff there is some c ∈ Σ* such that
V accepts ⟨w, c⟩.

● V runs in time polynomial in |w|.

● Proof sketch:

● If there is a verifier V for L, we can build a
poly-time NTM for L by nondeterministically
guessing a certificate c, then running V on w.

● If there is a poly-time NTM for L, we can build a
verifier for it. The certificate is the sequence of
choices the NTM should make, and V checks
that this sequence accepts.

A Problem in NP

● Does a Sudoku grid
have a solution?
● M = “On input

⟨S, A⟩, an encoding
of a Sudoku puzzle
and an alleged
solution to it:
– Deterministically

check whether A is
a solution to S.

– If so, accept; if not,
reject.”

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

A Problem in NP

● A graph coloring is a way of assigning colors to
nodes in an undirected graph such that no two
nodes joined by an edge have the same color.

● Applications in compilers, cell phone towers, etc.

● Question: Can G be colored with at most k colors?

● M = “On input ⟨⟨G, k⟩, C⟩, where C is an alleged
coloring:

● Deterministically check whether C is a legal
k-coloring of G.

● If so, accept; if not, reject.”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

